Synthesis, Properties, and Application of Graphene-Based Materials Obtained from Carbon Nanotubes and Acetylene Black

  • M. O. Danilov Vernadskyi Institute of General and Inorganic Chemistry, Nat. Acad. of Sci. of Ukraine
  • I. A. Rusetskii Vernadskyi Institute of General and Inorganic Chemistry, Nat. Acad. of Sci. of Ukraine
  • I. A. Slobodyanyuk Vernadskyi Institute of General and Inorganic Chemistry, Nat. Acad. of Sci. of Ukraine
  • G. I. Dovbeshko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • G. Ya. Kolbasov Vernadskyi Institute of General and Inorganic Chemistry, Nat. Acad. of Sci. of Ukraine
  • Yu. Yu. Stubrov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
Keywords: graphene oxide, reduced graphene oxide, electrocatalysis, electrode materials for oxygen electrode


Graphene oxide and reduced graphene oxide have been chemically synthesized from multiwall carbon nanotubes. Using a proper oxidant, nanotubes can be “unzipped” longitudinally to form graphene oxide nanoribbons. Afterward, reduced graphene oxide can be obtained with the help of a reductant. Standard redox potentials of carbon are used for the selection of an oxidant and a reductant. Various physico-chemical methods are applied to verify the production of graphene-like materials. The synthesized products are used as a material for oxygen electrodes in fuel elements. The electrochemical characteristics of electrodes fabricated from graphene-based materials are found to depend on the redox ability of applied reagents. The obtained materials are shown to be promising catalyst carriers for electrodes in chemical current sources.


F. Bidault, D.J.L. Brett, P.H. Middleton et al., Review of gas diffusion cathodes for alkaline fuel cells, J. Power Sourc. 187, 39 (2009) [DOI: 10.1016/j.jpowsour.2008.10.106].

M. Soehn, M. Lebert, T. Wirth et al., Design of gas diffusion electrodes using nanocarbon, J. Power Sourc. 176, 494 (2008) [DOI: 10.1016/j.jpowsour.2007.08.073].

C-T. Hsieh, J-Yi. Lin, and J.-L. Wei, Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes, Int. J. Hydrogen Energy 34, 685 (2009) [DOI: 10.1016/j.ijhydene.2008.11.008].

X. Wang, M. Waje, and Y. Yan, NT-based electrodes with high efficiency for PEMFCs, Electrochem. Solid-State Lett. 8, A42 (2005) [DOI: 10.1149/1.1830397].

G. Wang, X. Shen, J. Yao et al., Graphene nanosheets for enhanced lithium storage in lithium ion batteries, Carbon 47, 2049 (2009) [DOI: 10.1016/j.carbon.2009.03.053].

Y. Xin, J. Liu, X. Jie et al., Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts, Electrochim. Acta 60, 354 (2012) [DOI: 10.1016/j.electacta.2011.11.062].

Z. Lin, G. Waller, Y. Liu et al., Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction, Adv. Energy Mater. 2, 884 (2012) [DOI: 10.1002/aenm.201200038].

L.T. Qu, Y. Liu, J.B. Baek et al., Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano 4, 1321 (2010) [DOI: 10.1021/nn901850u].

Z.Y. Lin, M.K. Song, Y. Ding et al., Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction, Phys. Chem. Chem. Phys. 14, 3381 (2012) [DOI: 10.1039/C2CP00032F].

Y. Shao, S. Zhang, C. Wang et al., Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction, J. Power Sourc. 195, 4600 (2010) [DOI: 10.1016/j.jpowsour.2010.02.044].

A.G. Cano-M´arquez, F.J. Rodr´ıguez-Mac´ıas, J. CamposDelgado et al., Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes, Nano Lett. 9, 1527 (2009) [DOI: 10.1021/nl803585s].

D.V. Kosynkin, W. Lu, A. Sinitskii et al., Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor, ACS Nano 5, 968 (2011) [DOI: 10.1021/nn102326c].

A. Morelos-G´omez, S.M. Vega-D´ıaz, V.J. Gonz´alez et al., Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: Graphene nanoribbons with atomically smooth edges ACS Nano 6, 2261 (2012) [DOI: 10.1021/nn2043252].

L. Jiao, L. Zhang, X. Wang et al., Narrow graphene nanoribbons from carbon nanotubes, Nature 458, 877 (2009) [DOI: 10.1038/nature07919].

L. Valentini, Formation of unzipped carbon nanotubes by CF4 plasma treatment, Diamond Rel. Mater. 20, 445 (2011) [DOI: 10.1016/j.diamond.2011.01.038].

S. Mohammadi, Z. Kolahdouz, S. Darbari et al., Graphene formation by unzipping carbon nanotubes using a sequential plasma assisted processing, Carbon 52, 451 (2013) [DOI: 10.1016/j.carbon.2012.09.056].

I. Janowska, O. Ersen, T. Jacob et al., Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation, Appl. Catal. A 371, 22 (2009) [DOI: 10.1016/j.apcata.2009.09.013].

S. Vadahanambi, J-H. Jung, R. Kumar et al., An ionic liquid-assisted method for splitting carbon nanotubes to produce graphene nano-ribbons by microwave radiation, Carbon 53, 391 (2013) [DOI: 10.1016/j.carbon.2012.11.029].

A.L. El´ıas, As.R. Botello-M´endez, D. Meneses-Rodr´ıguez et al., Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels, Nano Lett. 10, 366 (2009) [DOI: 10.1021/nl901631z].

U.K. Parashar, S. Bhandari, R.K. Srivastava et al., Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes, Nanoscale 3, 3876 (2011) [DOI: 10.1039/C1NR10483G].

L. Jiao, X. Wang, G. Diankov et al., Facile synthesis of high-quality graphene nanoribbons, Nat. Nanotechnol. 5, 321 (2010) [DOI: 10.1038/nnano.2010.54].

L. Xie, H. Wang, C. Jin et al., Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electrical properties, J. Am. Chem. Soc. 133, 10394 (2011) [DOI: 10.1021/ja203860a].

P. Kumar, L.S. Panchakarla, and C.N.R. Rao, Laserinduced unzipping of carbon nanotubes to yield graphene nanoribbons, Nanoscale 3, 2127 (2011) [DOI: 10.1039/C1NR10137D].

K. Kim, A. Sussman, and A. Zettl, Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes, ACS Nano 4, 1362 (2010) [DOI: 10.1021/nn901782g].

A.V. Talyzin, S. Luzan, I.V. Anoshkin et al., Hydrogenation, purification, and unzipping of carbon nanotubes by reaction with molecular hydrogen: road to graphene nanoribbons, ACS Nano 5, 5132 (2011) [DOI: 10.1021/nn201224k].

M.C. Pavia, W. Xu, M.F. Proen¸ca et al., Unzipping of functionalized multiwall carbon nanotubes induced by STM, Nano Lett. 10, 1764 (2010) [DOI: 10.1021/nl100240n].

D.B. Shinde, J. Debgupta, A. Kushwaha et al., Electrochemical unzipping of multiwalled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons, J. Am. Chem. Soc. 133, 4168 (2011) [DOI: 10.1021/ja1101739].

D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii et al., Nature 458, 872 (2009).

S. Zhang, L. Zhu, H. Song et al., How graphene is exfoliated from graphitic materials: synergistic effect of oxidation and intercalation processes in open, semi-closed, and closed carbon systems, J. Mater. Chem. 22, 22150 (2012) [DOI: 10.1039/C2JM35139K].

Y. Zhu, S. Murali, W. Cai et al., Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22, 3906 (2010) [DOI: 10.1002/adma.201001068].

S. Pei and H.-M. Cheng, The reduction of graphene oxide, Carbon 50, 3210 (2012) [DOI: 10.1016/j.carbon.2011.11.010].

M.O. Danilov, I.A. Slobodyanyuk, I.A. Rusetskii et al., Reduced graphene oxide: a promising electrode material for oxygen electrodes, J. Nanostruct. Chem. 3, 1 (2013) [DOI: 10.1186/2193-8865-3-49].

M.O. Danilov, G.Ya. Kolbasov, I.A. Rusetskii et al., Electrocatalytic properties of multiwalled carbon nanotubes-based nanocomposites for oxygen electrodes, Russ. J. Appl. Chem. 85, 1536 (2012) [DOI: 10.1134/S1070427212100084].

S.G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K, J. Phys. Chem. 18, 1 (1989) [DOI: 10.1063/1.555839].

M.O. Danilov, I.A. Slobodyanyuk, I.A. Rusetskii et al., Influence of the synthesis conditions of reduced graphene oxide on the electrochemical characteristics of the oxygen electrode, Nanosci. Nanotech. Res. 2, 12 (2014) [DOI: 10.12691/nnr-2-1-3].

T. Lebedieva, V. Gubanov, G. Dovbeshko, and D. Pidhirnyi, Quantum-chemical calculation and visualization of the vibrational modes of graphene at different points of the Brillouin zone, Nanoscale Res. Lett. 10, 287 (2015) [DOI: 10.1186/s11671-015-0945-9].

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, T. Kaplas et al., Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films, Appl. Phys. Lett. 103, 073117 (2013) [DOI: 10.1063/1.4818680].

G.I. Dovbeshko, V.R. Romanyuk, D.V. Pidgirnyi, V.V. Cherepanov, E.O. Andreev, V.M. Levin, P.P. Kuzhir, T. Kaplas, and Yu.P. Svirko, Optical properties of pyrolytic carbon films versus graphite and graphene, Nanoscale Res. Lett. 10, 234 (2015) [DOI: 10.1186/s11671-015-0946-8].

G.I. Dovbeshko, O.P. Gnatyuk, A.A. Nazarova, Yu.I. Sementsov, and E.D. Obraztsova, Conformation analysis of nucleic acids and proteins adsorbed on single-shell carbon nanotubes, Fulleren. Nanotub. Carbon Nanostr. 13, 393 (2005) [DOI: 10.1007/s10947-009-0142-8].

S.Ya. Brichka, G.P. Prikhod’ko, Yu.I. Sementsov, A.V. Brichka, O.P. Paschuk, and G.I. Dovbeshko, Synthesis of carbon nanotubes from a chlorine-containing precursor and their properties, Carbon 42, 2581 (2004) [DOI: 10.1016/j.carbon.2004.05.040].

P. Ganesan, P. Ramakrishnan, M. Prabu et al., Nitrogen and sulfur co-doped graphene supported cobalt sulfide nanoparticles as an efficient air cathode for zincair battery, Electrochim. Acta. 183, 63 (2015) [DOI: 10.1016/j.electacta.2015.05.182].

Y. Liu, J. Li, W. Li et al., Spinel LiMn2O4 nanoparticles dispersed on nitrogen-doped reduced graphene oxide nanosheets as an efficient electrocatalyst for aluminiumair battery, Int. J. Hydrogen Energy 40, 9225 (2015) [DOI: 10.1016/j.ijhydene.2015.05.153].

How to Cite
Danilov, M., Rusetskii, I., Slobodyanyuk, I., Dovbeshko, G., Kolbasov, G., & Stubrov, Y. (2019). Synthesis, Properties, and Application of Graphene-Based Materials Obtained from Carbon Nanotubes and Acetylene Black. Ukrainian Journal of Physics, 61(10), 909.
Solid matter

Most read articles by the same author(s)