Relaxation Time of Concentration Fluctuations in a Vicinity of the Critical Stratification Point of the Binary Mixture n-Pentanol–Nitromethane
DOI:
https://doi.org/10.15407/ujpe61.10.0879Keywords:
ultrasound velocity, ultrasound absorption, critical stratification point, binary solution, concentration fluctuations, relaxation timeAbstract
The propagation velocity and the absorption coefficient of ultrasound in a frequency range of 5–2800 MHz in a n-pentanol–nitromethane solution in a vicinity of its critical stratification point from the homogeneous state side have been studied. The research make it possible to reveal the influence of concentration fluctuations on the sound propagation velocity. Three regions of dynamical parameters are analyzed: the mean-field (wтFL ≪ 1), fluctuation (wтFL ≫ 1), and transition (crossover, wтFL = 1) ones. On the basis of experimental data, the temperature dependence of the concentration fluctuation relaxation time т(T) is studied, and its magnitude т0 is determined. The contribution to the fluctuation part of the sound absorption coefficient at high frequencies (w > 300 MHz), which is connected with the sound scattering by concentration fluctuations near the critical stratification point is estimated.
References
A.Z. Patashinskii and V.L. Pokrovsky, Fluctuation Theory of Phase Transitions (Pergamon Press, Oxford, 1982).
M.A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Gordon and Breach, Philadelphia, 1991).
A. Onuki, Phase Transition Dynamics (Cambridge Univ.Press, Cambridge, 2002).
K.A. Chalyy, L.A. Bulavin, and A.V. Chalyi, Dynamic scaling and central component width of critical opalescence spectrum in liquids with restricted geometry, J. Phys. Stud. 9 (1), 66 (2005).
S. Artemenko, T. Lozovsky, and V. Mazur, Multiple critical points and liquid–liquid equilibria from the van der Waals like equations of state, J. Phys.: Condens. Matter. 20, 244119 (2008) [DOI: 10.1088/0953-8984/20/24/244119].
O.V. Chalyi, and O.V. Zaitseva, A kinetic model of synaptic transmission on intercell interaction, Ukr. J. Phys. 54, 366 (2009).
M.P. Kozlovskii, I.V. Pylyuk, and O.O. Prytula, Critical behaviour of a three-dimensional one-component magnet in strong and weak external fields at , Phys. A 369, 562 (2006) [DOI: 10.1016/j.physa.2006.02.016].
M.P. Kozlovskii, The correlation length of 3D Ising systems in the presence of an external field, Phase Trans. 80, 3 (2007) [DOI: 10.1080/01411590701315161].
I. Iwanowski, S.Z. Mirzaev, K. Orzechowski et al., Critical dynamics at the col point of the ternary system methanoln-hexane-cyclohexane, J. Mol. Liq. 145, 103 (2009) [DOI: 10.1016/j.molliq.2009.01.001].
N.O. Atamas’, L.A. Bulavin, O.A. Vasylkevych et al., Yadern. Fiz. Energ. 11, 159 (2010).
Kwang Hun Lim, H.J. Dyson, J.W. Kelly et al., Localized structural fluctuations promote amyloidogenic conformations in transthyretin, J. Mol. Biol. 425, 977 (2013) [DOI: 10.1016/j.jmb.2013.01.008].
I. Paul, C. P´epin, and M.R. Norman, Equivalence of single-particle and transport lifetimes from hybridization fluctuations, Phys. Rev. Lett. 110, 066402 (2013) [DOI: 10.1103/PhysRevLett.110.066402].
S.Z. Mirzaev and U. Kaatze, Scaling function of critical binary mixtures: Nitrobenzene-n-hexane data revisited, J. Chem. Phys. 393, 129 (2012) [DOI: 10.1016/j.chemphys.2011.11.035].
T. Hornowski and M. Labowski, Absorption and dispersion of ultrasonic waves in n-amylic alcohol-nitromethane critical mixture, Acta Phys. Pol. A 79, 671 (1991) [DOI: 10.12693/APhysPolA.79.671].
I. Iwanowski, R. Behrends, and U. Kaatze, Critical fluctuations near the consolute point of n-pentanol-nitromethane. An ultrasonic spectrometry, dynamic light scattering, and shear viscosity study, J. Chem. Phys. 120, 9192 (2004) [DOI: 10.1063/1.1703524].
V.S. Sperkach, A.D. Alekhin, and O.I. Bilous, Acoustic properties of liquid systems near the critical temperature, Ukr. J. Phys. 49, 655 (2004).
R.A. Ferrell, Decoupled-mode dynamical scaling theory of the binary-liquid phase transition, Phys. Rev. Lett. 24, 1169 (1970) [DOI: 10.1103/PhysRevLett.24.1169].
K. Kawasaki, Kinetic equations and time correlation functions of critical fluctuations, Ann. Phys. (N.Y.) 61, 1 (1970) [DOI: 10.1016/0003-4916(70)90375-1].
A.D. Alekhin and O.I. Bilous, The phenomenological approach to estimating critical indices of critical fluid, High Temp. 53, 199 (2015) [DOI: 10.1134/S0018151X15020017]
J.K. Bhattacharjee and R.A. Ferrell, Dynamic scaling theory for the critical ultrasonic attenuation in a binary liquid, Phys. Rev. A 24, 1643 (1981) [DOI: 10.1103/PhysRevA.24.1643].
J.K. Bhattacharjee, S.Z. Mirzaev, and U. Kaatze, Does the viscosity exponent derive from ultrasonic attenuation spectra? Int. J. Thermophys. 33 (3), 469 (2012) [DOI: 10.1007/s10765-012-1167-3].
W. Schrader, and U. Kaatze, Zwitterion headgroup orientation correlation and mobility and the domain structure of membranes, J. Phys. Chem. B 105, 6266 (2001) [DOI: 10.1021/jp010525t].
R. Folk and G. Moser, Frequency-dependent shear viscosity, sound velocity, and sound attenuation near the critical point in liquids. II. Comparison with experiment, Phys. Rev. E 57, 705 (1998) [DOI: 10.1103/PhysRevE.57.705].
A. Onuki, Bulk viscosity near the critical point, J. Phys. Soc. Jpn. 66, 511 (1997) [DOI: 10.1143/JPSJ.66.511].
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.