Correlation of the Photoinduced Total Transmission with the Degree of Surface Functionalization of Carbon Materials Obtained from Natural Renewable Sources

  • A. V. Uklein Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. E. Diyuk Taras Shevchenko National University of Kyiv
  • L. M. Grishchenko Taras Shevchenko National University of Kyiv
  • V. O. Kozhanov Taras Shevchenko National University of Kyiv
  • V. V. Lisnyak Taras Shevchenko National University of Kyiv
  • V. V. Multian Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • P. I. Budnyk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. Ya. Gayvoronsky Institute of Physics, Nat. Acad. of Sci. of Ukraine
Keywords: carbons, surface acidity, oxidation, nonlinear optical response

Abstract

For the first time, a contactless express method, which is based on the self-action of picosecond range laser pulses at 1064 nm, is used for the characterization of an optically dense porous layer of carbon material (CM) bulk particles obtained from a lignocellulosic source. It is found that the oxidation treatment reduces the Brunauer–Emmett–Teller (SBET) surface area from 9.52 × 105 m2/kg to 2.73 × 105 m2/kg. This reduction occurs due to the destruction of the carbon matrix fraction and to the formation of novel O-containing surface groups. The concentrated 30-mass% HNO3 is found to be the most efficient oxidant giving the highest yield of carboxylic (Cb), anhydridic, lactonic, and phenolic surface functionalities. The concentration of the surface functional groups is determined in a dynamic argon atmosphere by thermogravimetric (TG) analysis and thermoprogrammed desorption coupled with IR (TPD-IR) spectroscopy. The surface acidity defined from data of the Boehm titration shows the acceptable agreement with the data of TG-TPD-IR examination. An enhancement of the surface hydrophilicity allows the use of carbon matrix for the covalent binding of bioligands, amino acids, their residues, and proteins to the oxygen-containing functionalities, such as Cb groups. The observed photoinduced absorption efficiency of the bulk carbon particles Im(X(3)C) ∼ 10−16 m2/W is in the range of that of nanosized carbons. A slight variation of the ratio Im(X(3)C)/SBET within the limits of experimental errors indicates a certain correlation between the absorptive NLO response and the CM specific surface. We suggest to utilize Im(X(3)C) as a quality parameter for carbon materials subjected to the oxidation, which is a typical initial step of the most commonly used functionalization routes for the preparation of biomedical materials.

References

R.J. Hunter and V.R. Preedy, Nanomedicine in Health and Disease (CRC, Boca Raton, 2012).

M.J. Schulz and V.N. Shanov, Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices (Artech House, Boston-Norwood, 2009).

Z. Li, S. Wu, Z. Zhao, and L. Xu, Influence of surface properties on the interfacial adhesion in carbon fiber/epoxy composites, Surf. Interface Anal. 46, 16 (2014) [DOI: 10.1002/sia.5340].

S.F. Waseem, S.D. Gardner, G. He et al., Adhesion and surface analysis of carbon fibres electrochemically oxidized in aqueous potassium nitrate, J. Mater. Sci. 33, 3151 (1998) [DOI: 10.1023/A:1004304124799].

T.J. Webster, M.C. Waid, J.L. McKenzie, R.L. Price, and J.U. Ejiofor, Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants, Nanotechnology 15, 48 (2004) [DOI: 10.1088/0957-4484/15/1/009].

M. Yang, Y. Liang, Q. Gui, J. Chen, and Y. Liu, Electroactive biocompatible materials for nerve cell stimulation, Mater. Res. Express 2, 042001 (2015) [DOI: 10.1088/2053-1591/2/4/042001].

C.S.S.R. Kumar, Nanomaterials for Biosensors (Wiley, Weinheim, 2007).

P. Morgan, Carbon Fibers and Their Composites (CRC, Boca Raton, 2005).

L.-G. Tang, and J.L. Kardos, A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix, Polym. Compos. 18, 100 (1997) [DOI: 10.1002/pc.10265].

P.W. Yip and S.S. Lin, Effect of surface oxygen on adhesion of carbon fiber reinforced composites, MRS Proc. 170, 339 (1989) [DOI: 10.1557/PROC-170-339].

R.L. Price, K.M. Haberstroh, and T.J. Webster, Improved osteoblast viability in the presence of smaller nanometre dimensioned carbonfibres, Nanotechnology 15, 892 (2004) [DOI: 10.1088/0957-4484/15/8/004].

D.J. Hak, C. Mauffrey, D. Seligson, and B. Lindeque, Use of carbon-fiber-reinforced composite implants in orthopedic surgery, Orthopedics 37, 825 (2014) [DOI: 10.3928/01477447-20141124-05].

R. Hillock and S. Howard, Utility of carbon fiber implants in orthopedic surgery: literature review, JISRF Recon. Rev. 4, 23 (2014) [DOI: 10.15438/rr.v4i1.55].

C.S. Li, C. Vannabouathong, S. Sprague, and M. Bhandari, The use of carbon-fiber-reinforced (CFR) PEEK material in orthopedic implants: A systematic review, Clin. Med. Insights Arthritis Musculoskelet Disord. 8, 33 (2015) [DOI: 10.4137/CMAMD.S20354].

S.C. Tjong Advances in Biomedical Sciences and Engineering, edited by S.C. Tjong (Bentham, Hong-Kong, 2009), p. 143.

P. Aloukos, I. Papagiannouli, A.B. Bourlinos et al., Thirdorder nonlinear optical response and optical limiting of colloidal carbon dots, Optics Exp. 22, 12013 (2014) [DOI: 10.1364/OE.22.012013].

A.B. Bourlinos G. Trivizas, M.A. Karakassides et al., Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties, Carbon 83, 173 (2015) [DOI: 10.1016/j.carbon.2014.11.032].

I.M. Belousova D.A. Videnichev, I.M. Kislyakov et al., Comparative studies of optical limiting in fullerene and shungite nanocarbon aqueous dispersions, Opt. Mater. Exp. 5, 169 (2015) [DOI: 10.1364/OME.5.000169].

S. Couris and N. Liaros, Proc. of 16th Intern. Confer. on Transparent Optical Networks (ICTON), edited by M. Jaworski, and M. Marciniak (IEEE & National Institute of Telecommunications, Warsaw, 2014), p. 1 [DOI: 10.1109/ICTON.2014.6876558].

M.G. Papadopoulos, A.J. Sadlej, and J. Leszczynski, NonLinear Optical Properties of Matter: From Molecules to Condensed Phases (Springer, Dordrecht, 2006).

V.E. Diyuk, A.N. Zaderko, K.I. Veselovska, and V.V. Lisnyak, Functionalization of surface of carbon materials with bromine vapors at mediate high temperature: a thermogravimetric study, J. Therm. Anal. Calorim. 120, 1665 (2015) [DOI: 10.1007/s10973-015-4495-2].

K.-C. Xie, Structure and Reactivity of Coal (Springer, Berlin, 2015).

S.L. Goertzen, K.D. Th´eriault, A.M. Oickle et al., Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination, Carbon 48, 1252 (2010) [DOI: 10.1016/j.carbon.2009.11.050].

A.M. Oickle, S.L. Goertzen, K.R. Hopper et al., Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant, Carbon 48, 3313 (2010) [DOI: 10.1016/j.carbon.2010.05.004].

V.E. Diyuk, A.N. Zaderko, L.M. Grishchenko et al., Efficient carbon-based acid catalysts for the propan-2-ol dehydration, Catal. Commun. 27, 33 (2012) [DOI: 10.1016/j.catcom.2012.06.018].

K.I. Veselovs’ka, V.L. Veselovs’kyi, O.M. Zaderko et al., Effect of the oxidation and thermal treatment on bromination of activated carbon, J. Superhard Mater. 37, 39 (2015) [DOI: 10.3103/S1063457615010062].

V.Ya. Gayvoronsky, A.S. Popov, M.S. Brodyn et al., in: Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications, edited by O. Fesenko, and L. Yatsenko (Springer, Heidelberg, 2015).

W.L. Smith, in: CRC Handbook of Laser Science and Technology, edited by M.J. Weber (CRC, Boca Raton, 1988).

H. Looyenga, Dielectric constants of heterogeneous mixtures, Physica 31, 401 (1965) [DOI: 10.1016/0031-8914(65)90045-5].

S.O. Nelson, D.P. Lindroth, and R.L. Blake, Restricted access. Dielectric properties of selected minerals at 1 to 22 GHz, Geophysics 54, 1344 (1989) [DOI: 10.1190/1.1442596].

J.G. Speight, The Chemistry and Technology of Coal (CRC, Boca Raton, 2012).

J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, and J.J.M. Orf˜ao, Modification of the surface chemistry ´ of activated carbons, Carbon 37, 1379 (1999) [DOI: 10.1016/S0008-6223(98)00333-9].

W. Shen, Z. Li, and Y. Liu, Surface chemical functional groups modification of porous carbon, Rec. Pat. Chem. Eng. 1, 27 (2008) [DOI: 10.2174/2211334710801010027].

V.E. Diyuk, R.T. Mariychuk, and V.V. Lisnyak, Barothermal preparation and characterization of micro-mesoporous activated carbons, J. Therm. Anal. Calorim. 124, 1119 (2016) [DOI: 10.1007/s10973-015-5208-6].

L.P. Vera, J.A. P´erez, and H. Riascos, Spectroscopic study of emission coal mineral plasma produced by laser ablation, J. Phys.: Conf. Ser. 511, 012063 (2014) [DOI: 10.1088/1742-6596/511/1/012063].

R. Zhang, Y. Achiba, K.J. Fisher et al., Laser ablation mass spectrometry of pyrolyzed Koppers coal-tar pitch: a precursor for fullerenes and metallofullerenes, J. Phys. Chem. B 103, 9450 (1999) [DOI: 10.1021/jp9910791].

B.J. Stagg and T.T. Charalampopoulos, Refractive indices of pyrolytic graphite, amorphous carbon, and flame soot in the temperature range 25 to 600 C, Combust. Flame 94, 381 (1993) [DOI: 10.1016/0010-2180(93)90121-I].

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas et al., Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids, J. Phys. Chem. 117, 6842 (2013) [DOI: 10.1021/jp400559q].

S. Husaini, A. Lesko, E.M. Heckman, and R.G. Bedford, Engineered bio-compatible graphene nanomaterials for nonlinear applications, Opt. Mater. Exp. 5, 102 (2015) [DOI: 10.1364/OME.5.000102].

I. Papagiannouli, A.B. Bourlinos A. Bakandritsos, and S. Couris, Nonlinear optical properties of colloidal carbon nanoparticles: nanodiamonds and carbon dots, RSC Adv. 4, 40152 (2014) [DOI: 10.1039/C4RA04714A].

E.F. Venger, A.V. Goncharenko, and N.L. Dmitruk, Optics of Small Particles and Dispersed Media (Naukova Dumka, Kyiv, 1999) (in Ukrainian).

Published
2019-01-04
How to Cite
Uklein, A., Diyuk, V., Grishchenko, L., Kozhanov, V., Lisnyak, V., Multian, V., Budnyk, P., & Gayvoronsky, V. (2019). Correlation of the Photoinduced Total Transmission with the Degree of Surface Functionalization of Carbon Materials Obtained from Natural Renewable Sources. Ukrainian Journal of Physics, 61(10), 863. https://doi.org/10.15407/ujpe61.10.0863
Section
Optics, lasers, and quantum electronics