Age-Related Changes in FTIR and Raman Spectra of Human Blood

  • T. Makhnii D.F. Chebotarev State Institute of Gerontology of the NAMS of Ukraine
  • O. Ilchenko D.F. Chebotarev State Institute of Gerontology of the NAMS of Ukraine
  • A. Reynt D.F. Chebotarev State Institute of Gerontology of the NAMS of Ukraine
  • Y. Pilgun Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
  • A. Kutsyk Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
  • D. Krasnenkov D.F. Chebotarev State Institute of Gerontology of the NAMS of Ukraine
  • M. Ivasyuk Faculty of Life Science, National University of Kyiv-Mohyla Academy
  • V. Kukharskyy D.F. Chebotarev State Institute of Gerontology of the NAMS of Ukraine
Keywords: human blood, age, Raman spectroscopy, ATR-FTIR spectroscopy, Partial Least Squares (PLS) analysis


Blood analysis by spectroscopic techniques can provide important information about biochemistry and life processes in it. Blood indices are highly variable, and plenty of factors influence them. The present work describes the combination of two methods – IR and Raman spectroscopies of blood applied to investigate gerontology issues. We carried out a pilot study of 74 blood samples. The donors were differentiated by age with the Partial Least Squares (PLS) analysis of Raman and IR spectra. Analyzing the principal component spectra obtained during PLS processn the most illustrative bands were found in the intervals 2860–3030 cm−1, 1370–1620 cm−1, 1020–1220 cm−1 and in 1650–1530 cm−1, 1380–1360 cm−1, 1220–1200 cm−1, 1002–1004 cm−1, 760–750 cm−1 in IR and Raman spectral regions, respectively. Calibration models obtained via the PLS analysis of blood vibrational spectra provide the accuracy of age determination around ±15 years from FTIR data and around ±20 years from Raman data. Though such calibrations cannot be used for the precise determination of age, the age-related changes of blood do really exist and can be detected from vibrational spectra.


M.J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H.J. Butler, K.M. Dorling, P.R. Fielden, S.W. Fogarty, N.J. Fullwood, K.A. Heys, C. Hughes, P. Lasch, P.L. Martin-Hirsch, B. Obinaju, G.D. Sockalingum, J. Sul´e-Suso, R.J. Strong, M.J. Walsh, B.R Wood, P. Gardner, and F.L Martin, Using Fourier transform IR spectroscopy to analyze biological materials, Nat. Protoc. 8, 1771 (2014) [DOI: 10.1038/nprot.2014.110].

D. Naumann, FT-infrared and FT-Raman spectroscopy in biomedical research, Appl. Spectrosc. Rev. 36, 239 (2011) [DOI: 10.1081/ASR-100106157].

D.I. Ellis and R. Goodacre, Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy, Analyst 131, 875 (2006) [DOI: 10.1039/b602376m].

S. Yoshida, M. Yoshida, M. Yamamoto, and J. Takeda, Optical screening of diabetes mellitus using non-invasive Fourier-transform infrared spectroscopy technique for human lip, J. Pharmaceutical and Biomedical Analysis. 76, 25, 169 (2013) [DOI: 10.1016/j.jpba.2012.12.009].

P.J. Wu, M.H. Chang, C.Y. Huang, Y.C. Wang, J.R. Kuo, Y.J. Huang, and Lin, Near-infrared spectroscopy system for determining brain hemoglobin level, Conf. Proc. IEEE Eng. Med. Biol. Soc. 24, 12 (2013) [DOI: 10.1109/EMBC.2013.6610025].

W.R. Premasiri, J.C. Lee, and L.D. Ziegler, Surfaceenhanced Raman scattering of whole human blood, blood plasma, and red blood cells: Cellular processes and bioanalytical sensing, J. Phys. Chem. B 116, 9376 (2012) [DOI: 10.1021/jp304932g].

B. Yan, B. Li, Z. Wen, X. Luo, L. Xue, and L. Li, Label-free blood serum detection by using surface-enhanced Raman spectroscopy and support vector machine for the preoperative diagnosis of parotid gland tumors, BMC Cancer 15, 650 (2015) [DOI: 10.1186/s12885-015-1653-7].

H.M. Heise, R. Marbach, G. Janatsch, and J.D. KruseJarres, Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy, Anal. Chem. 61, 2009 (1989) [DOI: 10.1021/ac00193a004].

S. Ahlawat, A. Chowdhury, N. Kumar, A. Uppal, R.S. Verma, and P.K. Gupta, Polarized Raman spectroscopic investigations on hemoglobin ordering in red blood cells, J. Biomed. Opt. 19, 087002 (2014) [DOI: 10.1117/1.JBO.19.8.087002].

P.S. Bernstein, D.-Y. Zhao, S.W. Wintch, I.V. Ermakov, R.W. McClane, and W. Gellermann, Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients, Ophthalmology 109, 1780 (2002).

M. Kozicki, D.J. Creek, A. Sexton, B.J. Morahan, A. Wese lucha-Birczy´nska, and B.R. Wood, An attenuated total reflection (ATR) and Raman spectroscopic investigation into the effects of chloroquine on Plasmodium falciparuminfected red blood cells, Analyst 140, 2236 (2015) [DOI: 10.1039/C4AN01904K].

J.W. Ager, R.K. Nalla, K.L. Breeden, and R.O. Ritchie, Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone, J. of Biomed. Opt. 10, 034012 (2005) [DOI: 10.1117/1.1924668].

K. Virkler and I.K. Lednev, Forensic body fluid identification: the Raman spectroscopic signature of saliva, Analyst 135, 512 (2010) [DOI: 10.1039/b919393f].

Y.H. Ong, M. Lim, and Q. Liu, Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells, Opt. Express 20, 22158 (2012) [DOI: 10.1364/OE.20.022158].

U. Neugebauer, J.H. Clement, T. Bocklitz, C. Krafft, and J. Popp, Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging, J. Biophoton. 3, 579 (2010) [DOI: 10.1002/jbio.201000020].

T.G. Spiro and J.M. Burke, Protein control of porphyrin conformation. Comparison of resonance Raman spectra of heme proteins with mesoporphyrin IX analogs, J. Am. Chem. Soc. 98, 5482 (1976) [DOI: 10.1021/ja00434a013].

T.W. Scott and J.M. Friedman, Tertiary-structure relaxation in hemoglobin: a transient Raman study, J. Am. Chem. Soc. 106, 5677 (1984) [DOI: 10.1021/ja00331a044].

C. Krafft, L. Neudert, T. Simat, and R. Salzer, Near infrared Raman spectra of human brain lipids, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 61, 1529 (2005) [DOI: 10.1016/j.saa.2004.11.017].

B.R. Wood, P. Caspers, G.J. Puppels, Sh. Pandiancherri, and D. McNaughton, Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation, Anal. Bioanal. Chem. 387, 1691 (2007) [DOI: 10.1007/s00216-006-0881-8].

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, Raman spectroscopy for identification of epithelial cancers, Faraday Discuss. 126, 141 (2004) [DOI: 10.1039/B304992B].

L.E. Kamemoto, A.K. Misra, S.K. Sharma, M.T. Goodman, H. Luk, A.C. Dykes, and T. Acosta, Near-infrared micro-Raman spectroscopy for in vitro detection of cervical cancer, Appl. Spectrosc. 64, 255 (2010) [DOI: 10.1366/000370210790918364].

G. Shetty, C. Kedall, N. Shepherd, N. Stone, and H. Barr, Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus, Br. J. Cancer 94, 1460 (2006) [DOI: 10.1038/sj.bjc.6603102].

L. Rimai, I. Salmeen, and D.H. Petering, Comparison of the resonance Raman spectra of carbon monoxy and oxy hemoglobin and myoglobin: similarities and differences in heme electron distribution, Biochemistry 14, 378 (1975).

J. Lin, R. Chen, S. Feng, J. Pan, Y. Li, G. Chen, M. Cheng, Z. Huang, Y. Yu, and H. Zeng, A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection, Nanomedicine: Nanotechnology, Biology, and Medicine 7, 655 (2011) [DOI: 10.1016/j.nano.2011.01.012].

A. Bankapur, S. Barkur, S. Chidangil, and D. Mathur, A micro-Raman study of live, single red blood cells (RBCs) treated with AgNO3 nanoparticles, PLoS One 9, e103493 (2014) [DOI: 10.1371/journal.pone.0103493].

J.W. Chan, D.S. Taylor, T. Zwerdling, S.M. Lane, K. Ihara, and T. Huser, Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells, Biophys. J. 90, 648 (2006) [DOI: 10.1529/biophysj.105.066761].

B. Prescott, W. Steinmetz, and G.J. Thomas, Characterization of DNA structures by laser Raman spectroscopy, Biopolymers 23, 235 (1984) [DOI: 10.1002/bip.360230206].

T.G. Spiro and T.C. Strekas, Resonance Raman spectra of heme proteins. Effects of oxidation and spin state, J. Am. Chem. Soc. 96, 338 (1974) [DOI: 10.1021/ja00809a004].

B.R. Wood and D. McNaughton, Raman excitation wavelength investigation of single red blood cells in vivo, J. Raman Spectrosc. 33, 517 (2002) [DOI: 10.1002/jrs.870].

C. Krafft, S.B. Sobottka, G. Schackertb, and R. Salzer, Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors, Analyst 130, 1070 (2005) [DOI: 10.1039/b419232j].

W. Chua-anusorn and J. Webb, Infrared spectroscopic studies of nanoscale iron oxide deposits isolated from human thalassemic tissues, J. Inorg. Biochem. 79, 303 (2000) [DOI: 10.1016/S0162-0134(99)00233-0].

G. Rusciano, A. De Luca, G. Pesce, and A. Sasso, Raman tweezers as a diagnostic tool of hemoglobin-related blood disorders, Sensors 8, 7818 (2008) [DOI: 10.3390/s8127818].

A.J. Ruiz-Chica, M.A. Medina, F. S´anchez-Jim´enez, and F.J. Ram´ırez, Characterization by Raman spectroscopy of conformational changes on guanine–cytosine and adenine–thymine oligonucleotides induced by aminooxy analogues of spermidine, J. Raman Spectrosc. 35, 93 (2004) [DOI: 10.1002/jrs.1107].

V.K. Ghodakel and G.R. Kulkarnil, Effect of low frequency mechanical vibrations on human blood (in vitro), Int. J. Chem. Phys. Sci. 4 Special Issue 5 ETP (2015).

L.N. Salmaso, G.J. Puppels, P.J. Caspers, R. Floris, R. Wever, and J. Greve, Resonance Raman microspectroscopic characterization of eosinophil peroxidase in human eosinophilic granulocytes, Biophys. J. 67, 436 (1994) [DOI: 10.1016/S0006-3495(94)80499-0].

N. Stone, C. Kendell, N. Shepherd, P. Crow, and H. Barr, Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers, J. Raman Spectrosc. 33, 564 (2002) [DOI: 10.1002/jrs.882].

Z. Huang, A. McWclliams, H. Lui, D.I. McLean, S. Lam, and H. Zeng, Near-infrared Raman spectroscopy for optical diagnosis of lung cancer, Int. J. Cancer 107, 1047 (2003) [DOI: 10.1002/ijc.11500].

A. Mahadevan-Jansen and R.R. Kortum, Raman spectroscopy for the detection of cancers and precancers, J. Biomed. Opt. 1, 31 (1996) [DOI: 10.1117/12.227815].

R.K Dukor, Vibrational spectroscopy in the detection of cancer, Biomed. Appl. 5, 3335 (2002).

J.V. Glenn, J.R. Beattie, L. Barrett, N. Frizzell, S.R. Thorpe, M.E. Boulton, J.J. McGarvey, and A.W. Stitt, Confocal Raman microscopy can quantify advanced glycation end product (AGE) modifications in Bruch’s membrane leading to accurate, nondestructive prediction of ocular aging, The FASEB Journal 21, 3542 (2007) [DOI: 10.1096/fj.06-7896com].

G. Bud´ınov´a, J. Salva, and K. Volka, Application of molecular spectroscopy in the mid-infrared region to the determination of glucose and cholesterol in whole blood and in blood serum, Appl. Spectrosc. 51, 631 (1997) [DOI: 10.1366/0003702971941034].

S. Olszty´nska-Janus, K. Szymborska-Malek, M. G¸asior Glogowska, T. Walski, M. Komorowska, W. Witkiewicz, C. Pezowicz, M. Kobielarz, and S. Szotek, Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy, Acta of Bioengin. and Biomech. Rev. 14, 101 (2012) [DOI: 10.5277/abb120314].

R. Manoharan, J.J. Baraga, R.P. Rava, R.R. Dasari, M. Fitzmaurice, and M.S. Feld, Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy, Atherosclerosis 103, 181 (1993) [DOI: 10.1016/0021-9150(93)90261-R].

N.S. Eikje, K. Aizawa, T. Sota, Y. Ozaki, and S. Arase, Identification and characterization of skin biomolecules for drug targeting and monitoring by vibrational spectroscopy, Open Med. Chem. J. 2, 38 (2008) [DOI: 10.2174/1874104500802010038].

Y.-J. Kim, S. Hahn, and G. Yoon, Determination of glucose in whole blood samples by mid-infrared spectroscopy, Appl. Opt. 42, 745 (2003) [DOI: 10.1364/AO.42.000745].

L.A. Tamic and K.A. Hartman, The infrared spectra and structure of the amadori product formed from glucose and glycine, Appl. Spectrosc. 39, 591 (1985) [DOI: 10.1366/0003702854250095].

S. Arikana, H.S. Sands, R.G. Rodwaya, and D.N. Batchelder, Raman spectroscopy and imaging of -carotene in live corpus luteum cells, Animal Reprod. Sci. 71, 249 (2002) [DOI: 10.1016/S0378-4320(02)00020-9].

M.F. Zhu, X.P. Ye, Y.Y. Huang, Z.Y. Guo, Z.F. Zhuang, and S.H. Liu, Detection of methemoglobin in whole blood based on confocal micro-Raman spectroscopy and multivariate statistical techniques, Scanning 36, 471 (2014) [DOI: 10.1002/sca.21143].

S. Olszty´nska-Janus, M. G¸asior-G logowska, K. Szymborska-Malek, B. Czarnik-Matusewicz, and M. Komorowska, Specific applications of vibrational spectroscopy in biomedical engineering, Biomedical Engineering, Trends, Research and Techn. 4, 91 (2011) [DOI: 10.5772/13121].

B.R. Wood, P. Caspers, G.J. Puppels, Sh. Pandiancherri, and D. McNaughton, Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation, Anal. Bioanal. Chem. 387, 1691 (2007) [DOI: 10.1007/s00216-006-0881-8].

D. Sheng, Y. Wu, X. Wang, D. Huang, X. Chen, and X. Liu, Comparison of serum from gastric cancer patients and from healthy persons using FTIR spectroscopy, Spectrochim. Acta Part A: Mol. and Biomol. Spectr. 116, 365 (2013) [DOI: 10.1016/j.saa.2013.07.055].

C. Petibois, G. Cazorla, A. Cassaigne, and G. D´el´eris, Plasma protein contents determined by Fourier-transform infrared spectrometry, Clinical Chemistry 47, 730 (2001).

M. Polakovs, N. Mironova-Ulmanea, N. Kurjaneb, E. Reinholdsc, and M. Grubed, Proc. of Sixth International Conference on Advanced Optical Materials and Devices, edited by J. Spigulis, A. Krumins, D. Millers, A. Sternberg, I. Muzikante, A. Ozols, M. Ozolinsh, SPIE (2008) p. 714214-1.

S.J. Ahmed, W. Santosh, S. Kumar et al., Neural network algorithm for the early detection of Parkinson’s disease from blood plasma by FTIR micro-spectroscopy, Vib. Spectrosc. 53, 181 (2010) [DOI: 10.1016/j.vibspec.2010.01.019].

Changan Xie and Yong-qing Li, Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques, J. Appl. Phys. 93, 2982 (2003) [DOI: 10.1063/1.1542654].

T.C. Strecas and T.G. Spiro, Hemoglobin: Resonance Raman spectra, Biochim. Biophys. Acta 263, 830 (1972) [DOI: 10.1016/0005-2795(72)90072-4].

A. Perrenoud, E.C. Rangel, R.P. Mota, S.F. Durrant, and N.C. da Cruz, Evaluation of blood compatibility of plasma deposited heparin-like films and SF6 plasma treated surfaces, Mat. Res. 13, 95 (2010) [DOI: 10.1590/S1516-14392010000100019].

A.L. Pomerantsev, Chemometrics in Excel (Wiley, New York, 2014).

P.H. Garthwaite, An interpretation of partial least squares, J. Am. Stat. Assoc. 89, 122 (1994) [DOI: 10.2307/2291207].

O.Ye. Rodionova and A.L. Pomerantsev, Chemometrics: achievements and prospects, Russ. Chem. Rev. 75, 271 (2006) [DOI: 10.1070/RC2006v075n04ABEH003599].

B.R. Wood, B. Tait, and D. McNaughton, Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte, Biochim. Biophys. Acta 1539, 58 (2001).

W.F. DeNino, A. Tchernof, I.J. Dionne, M.J. Toth, P.A. Ades, C.K. Sites, and E.T. Poehlman, Contribution of abdominal adiposity to age-related differences in insulin sensitivity and plasma lipids in healthy nonobese women, Diabetes Care 24, 925 (2001).

S. Boyd, M.F. Bertino, and S.J. Seashols, Raman spectroscopy of blood samples for forensic applications, Forensic Sci. Intern. 208, 124 (2011) [DOI: 10.1016/j.forsciint.2010.11.012].

How to Cite
Makhnii, T., Ilchenko, O., Reynt, A., Pilgun, Y., Kutsyk, A., Krasnenkov, D., Ivasyuk, M., & Kukharskyy, V. (2019). Age-Related Changes in FTIR and Raman Spectra of Human Blood. Ukrainian Journal of Physics, 61(10), 853.
Atoms and molecules