Semiempirical Energies of Vacancy Formation in Semiconductors

  • I. V. Horichok Vasyl Stefanyk Precarpathian National University
  • H. Ya. Hurhula Vasyl Stefanyk Precarpathian National University
  • V. V. Prokopiv Vasyl Stefanyk Precarpathian National University
  • M. A. Pylyponiuk Vasyl Stefanyk Precarpathian National University
Keywords: semiconductors, point defects, defect formation energy


Using the extended H¨uckel method and the methods based on thermochemical, thermodynamic, and electrophysical data, the energies of vacancy formation in AIIBVI, AIIIBV, and AIVBVI semiconductor crystals have been determined. A correlation of the obtained values with one another and with the literature experimental and ab initio theoretical data is established. This testifies to the adequacy of the applied methods and to a possibility of using them for the estimation of the defect concentration in semiconductors.


S.V. Bulyarskii, V.V. Fistul. Thermodynamics and Kinetics of Interacting Defects in Semiconductors (Nauka, 1997) (in Russian).

S.A. Medvedev. Physics and Chemistry of AIIB VI Compounds (Mir, 1970) (in Russian).

A. Sakalas. Point Defects in Semiconductor Compounds (Mokslas, 1988) (in Russian).

R. Grill, A. Zappettini. Point defects and diffusion in cadmium telluride. Prog. Cryst. Growth Charact. Mater. 48/49, 209 (2004)

N.V. Ganina, V.A. Shmugurov, V.I. Fistul. Quantumchemical method of determination of the enthalpy of the creation of a monovacancy in semiconductors. Fiz. Khim.Tverd. Tila 5, 430 (2004).

N.V. Ganina, V.A. Shmugurov, V.I. Fistul. The enthalpy of formation of an antistructural defect in AIIIBV compounds. Fiz. Khim. Tverd. Tila 7, 271 (2006).

V.D. Verner, D.K. Nichugovskii. The energy of formation of vacancies of metal atoms in gallium arsenide and indium antimonide. Fiz. Tekh. Poluprovodn. 7, 2012 (1973).

M.N. Magomedov. The enthalpy of formation of a Schottky defect in ionic crystals. Fiz. Tverd. Tela 34, 3724 (1992).

I.V. Gorichok, V.M. Pisklinets, V.V. Prokopiv. The energies of formation of intrinsic point defects in crystals AnBvi. Neorg. Mater. 48, 162 (2012).

W.A. Harrison. Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, 1989).

I.B. Bersuker. Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory (Wiley, 2010).

O.P. Charkin, G.V. Bobykina, M.E. Dyatkina. Structure of Molecules and Quantum Chemistry (Naukova Dumka, 1970) (in Russian).

V.A. Gubanov, V.P. Zhukov, A.O. Litinskii. Semiempirical Molecular Orbital Methods in Quantum Chemistry (Nauka, 1976) (in Russian).

S.S. Batsanov, R.A. Zvyagina. Overlap Integrals and the Problem of Effective Charges (Nauka, 1966) (in Russian).

V.V. Prokopiv, I.V. Gorichok, L.D. Yurchyshyn. The monovacancy formation energies in crystals A3B5 and A4B6. Fiz. Khim. Tverd. Tila 11, 849 (2010).

I.V. Gorichok. The vacancy formation energy in crystals A2B6. Fiz. Khim. Tverd. Tila 12, 322 (2011).

M.O. Shevchuk, I.V. Gorichok. Energies of formation of monovacancies in the monochalcogenides of samarium and europium. Fiz. Khim. Tverd. Tila 13, 407 (2012).

S.A. Medvedev. Introduction to the Technology of Semiconductor Materials (Vysshaya Shkola, 1970) (in Russian).

S.S. Batsanov. Structural Chemistry. Facts and Dependences (Dialog-MGU, 2000) (in Russian).

Yu.A. Burenkov, S.P. Nikanorov. Elastic properties and binding forces of crystals with lattices of diamond and sphalerite. Fiz. Tverd. Tela 26, 3224 (1984).

A.A. Levin. The band theory and empirical correlations for diamond-like semiconductor crystals. Fiz. Tekh. Poluprovodn. 8, 1481 (1971).

I.L. Knunyants. Chemical Encyclopedia (Sovets. Entsykl., 1988) (in Russian).

K.V. Shalimova. Physics of Semiconductors (Energoatomizdat, 1985) (in Russian).

V.V. Zuev, L.N. Potselueva, Yu.D. Goncharov. Crystal Energetics as the Basis of Estimate of Properties of SolidState Materials (Al’fapol, 2006) (in Russian).

D.M. Freik, V.V. Prokopiv, M.O. Galushchak, M.V. Pyts, G.D. Mateik. Crystal Chemistry and Thermodynamics of Atomic Defects in A4B6 Compounds (Plai, 1999) (in Ukrainian).

P.M. Nicolic. Some optical properties of lead-tinchalcogenide alloys. Matem. Fizika 354 (1971).

P.B. Littlewood. Phase Transitions and Optical Properties of IV-VI Compounds (Bell Labor., 1988)

V.V. Bondarenko, V.V. Zabudsky, F.F.Sizov. Electronphonon interaction and electron mobility in PbTe/PbS quantum n-dimensional structures of the II type. Fiz. Tekh. Poluprovodn. 32, 739 (1998).

R.R. Romanyuk, I.S. Dutsyak, A.G. Mikolaichuk. Effect of gamma irradiation on the optical properties of amorphous GeSe films. Inorg. Mater. 43, 584 (2007)

M. Frumar, T. Wagner, M. Hrdlicka, B. Frumarova, P. Nemec. Non-volative phase change memory materials and their induced changes (Pardubice, 2008), p. 8.

M.N. Magomedov. Volume and entropy of the formation of a Schottky defect in ionic crystals. Fiz. Tverd. Tela 34, 3718 (1992).

M.N. Magomedov. Interatomic potential and equation of state for tetrahedral semiconductors. Zh. Fiz. Khim. 63, 2943 (1989).

M.N. Magomedov. Calculation of the Debye temperature and the Gr?uneisen parameter. Zh. Fiz. Khim. 61, 1003 (1987).

V.N. Chebotin. Physical Chemistry of Solids (Khimiya, 1982) (in Russian).

D.S. Sanditov, V.V. Mantanov, M.V. Darmaev, B.D. Sanditov. On the Gr?uneisen parameter for crystals and glasses. Tech. Phys. 54, 385 (2009)

V.P. Mikhalchenko. On the Born relation for crystal lattices of the types of diamond and sphalerite. Fiz. Tverd. Tela 45, 429 (2003).

Yi. Zhang, Xu. Ke, Ch. Chen, J. Yang, P.R.C. Kent. Thermodynamic properties of PbTe, PbSe, and PbS: Firstprinciples study. Phys. Rev. 80, 024304 (2009)

M.N. Magomedov. On determination of the Gr?uneisen parameter from experimental data. Tech. Phys. 55, 1382 (2010)

M.N. Magomedov. On the determination of the Debye temperature from experimental data. Phys. Solid State 45, 32 (2003)

M.N. Magomedov. Parameters of vacancies’ formation in the carbon-subgroup crystals. Semiconductors 42, 1133 (2008)

M.N. Magomedov. On features of the generation of vacancies at low temperature. Tech. Phys. Lett. 27, 773 (2001).

N.V. Lugueva, S.M. Luguev. The influence of structural features on the thermal conductivity of polycrystalline zinc sulfide. Phys. Solid State 44, 260 (2002)

A.N. Filanovich, A.A. Povzner, V.Yu. Bodryakov et al. Effect of phonon anharmonicity on the thermal and elastic properties of stabilized -plutonium. Tech. Phys. Lett. 35, 929 (2009)

T.P. Tchernyaeva, V.M. Gritsina, E.A. Mihajlov, A.V. Ostapov. Correlation between elasticity and other properties of zirconium. Vopr. At. Nauki Tekhn. 4, 206 (2009).

I. Bolesta. Solid State Physics (Lviv. Nats. Univ., 2003) (in Ukrainian).

I.A. Sluchinskaya. Principles of Materials Science and Semiconductor Technology (Mir, 2002) (in Russian).

N.V. Lugueva. Study of the influence of structural defects on the heat condictivity of polycrystalline specimens of ZnS, ZnSe, CdTe. Khim. Komp. Modelir. Butlerov. Soobshchen. 10, Suppl., 200 (2002).

N.N. Berchenko, V.E. Krevs, V.G. Sredin. in Semiconductor Solid Solutions and Their Application, edited by V.G. Sredin (Voenizdat, 1982) (in Russian).

N.Kh. Abrikosov, V.F. Bankina, L.V. Poretskaya, L.E. Shelimova, E.V. Skudnova. Semicondncting II–VI, IV–VI and V–VI Compounds (Plenum Press, 1969)

Yu.Kh. Vekilov. Elastic constants and parameters of the dynamics of lattices of some compounds AIIBVI . Fiz. Tverd. Tela 13, 1157 (1971).

L.A. Sergeeva. Neorg. Mater. 16, 1346 (1980).

V.I. Sokolov, N.B. Gruzdev, I.A. Farina. Local vibrational mode in zinc telluride associated with a charged nickel impurity. hys. Solid State 45, 1638 (2003)

A.P. Babichev, N.A. Babushkina, A.M. Bratkovskii et al. Physical Constants: A Handbook, edited by I.S. Grigoriev, E.Z. Meilikhov (Energoatomizdat, 1991) (in Russian).

V.I. Sokolov, N.B. Gruzdev, E.A. Shirokov, A.N. Kislov. Anharmonicity of lattice vibrations induced by charged nickel impurities in II–VI semiconductors. Phys. Solid State 44, 34 (2002)

V.F. Masterov, K.F. Shtelmakh, V.P. Maslov, S.B. Mikhrin, B.E. Samorukov. The relaxation of the neutral state of manganese in gallium arsenide. Semiconductors 37, 918 (2003)

V.I. Fistul. Introduction to Semiconductor Physics (Vysshaya Shkola, 1984) (in Russian).

L.E. Shalimova. Neorg. Mater. 24 (1988).

N.V. Lugueva, S.M. Luguev. The influence of structural features on the thermal conductivity of polycrystalline zinc sulfide. Phys. Solid State 44, 260 (2002)

L.A. Girifalco. Statistical Physics of Materials (Wiley, 1973).

Yu. B. Rumer, M.Sh. Ryvkin. Thermodynamics, Statistical Physics, and Kinetics (Mir Publ., 1980).

I.V. Gorichok, P.M. Fochuk, Ye.V. Verzhak et al. Compensation mechanism of bromine dopants in cadmium telluride single crystals. J. Cryst. Growth 415, 146 (2015)

D.M. Freik, I.V. Gorichok, S.D. Bardashevska, G.Ya. Gurgula. Thermodynamics of the defect subsystem of zinc telluride. Fiz. Khim. Tverd. Tila 14, 378 (2013).

I.V. Gorichok, D.M. Freik, S.D. Bardashevska. Thermodynamics of point defects and homogeneity of zinc telluride. Fiz. Khim. Tverd. Tila 15, 268 (2014).

D.M. Freik, I.V. Gorichok, M.V .Shevchuk, L.V. Turovska. Native point defects in lead telluride on the edge of the field homogeneity. Fiz. Khim. Tverd. Tila 12, 378 (2011).

D.M. Freik, I.V. Gorichok, L.D. Yurchyshyn. Thermodynamics and crystallochemistry of point defects in crystals of germanium telluride ??-GeTe. Ukr. Khim. Zh. 79, 35 (2013).

D.M. Freik, I.V. Gorichok, M.O. Shevchuk. The thermodynamics of intrinsic point defects and the region of homogeneity of samarium monosulfide. Ukr. Khim. Zh. 78, 25 (2012).

V.I. Baikov, E.I. Isaev, P.A. Korzhavyi et al. Ab initio study of energy characteristics and magnetic properties of point defects in GaAs. Fiz. Tverd. Tela 47, 1762 (2005).

D.M. Freik, I.V. Gorichok, V.V. Prokopiv, jr. Thermodynamics of intrinsic point defects in cadmium telluride at the boundary of the homogeneity region. Chem. Metals Alloys 4, 223 (2011).

Su-Huai Wei, S. Zhang. Chemical trends of defect formation and doping limit in II–VI semiconductors: The case of CdTe. Phys. Rev. B 66, 155211 (2002)

M.A. Berding. Native defects in CdTe. Phys. Rev. 60, 8943 (1999)

P.M. Fochuk, O.E. Panchuk, L.P. Shcherbak. The nature of predominant point defects in CdTe crystals: Cd-rich region. Fiz. Khim. Tverd. Tila 5, 136 (2004).

Li Yujie, Ma Guoli, Jie Wanqi. Point defects in CdTe. J. Cryst. Growth 256, 266 (2003)

D.M. Freik, V.M. Chobanyuk, A.M. Voznyak et al. Electron localized states in semiconductors. III. Energy levels of point defects in zinc, cadmium and lead telluride. Fiz. Khim. Tverd. Tila 12, 834 (2011).

Khang Hoang, S.D. Mahanti, Puru Jena. Theoretical study of deep-defect states in bulk PbTe and in thin films. Phys. Rev. B 76, 115432 (2007)

V.P. Makhnii, M.D. Raranskyi. Point Defects in Diamondlike Semiconductors (Ruta, 2002) (in Ukrainian).

How to Cite
Horichok, I., Hurhula, H., Prokopiv, V., & Pylyponiuk, M. (2019). Semiempirical Energies of Vacancy Formation in Semiconductors. Ukrainian Journal of Physics, 61(11), 992.
Solid matter

Most read articles by the same author(s)