Internal States of Hadrons in Relativistic Reference Frames

  • N. O. Chudak Odesa National Polytechnic University, Chair of Theoretical and Experimental Nuclear Physics
  • K. K. Merkotan Odesa National Polytechnic University, Chair of Theoretical and Experimental Nuclear Physics
  • D. A. Ptashynskyy Odesa National Polytechnic University, Chair of Theoretical and Experimental Nuclear Physics
  • O. S. Potiyenko Odesa National Polytechnic University, Chair of Theoretical and Experimental Nuclear Physics
  • M. A. Deliyergiyev Institute of Modern Physics, Department of High Energy Nuclear Physics
  • A. V. Tikhonov Universit´e de Gen´eve, D´epartement de Physique Nucl´eaire et Corpusculaire
  • G. O. Sokhrannyi Jozef Stefan Institute, Department of Experimental Particle Physics
  • O. V. Zharova Odesa National Polytechnic University, Chair of Higher Mathematics and Modeling Systems
  • O. D. Berezovs’kyi Odesa National Polytechnic University, Chair of Theoretical and Experimental Nuclear Physics
  • V. V. Voitenko Odesa National Polytechnic University, Chair of Theoretical and Experimental Nuclear Physics
  • Yu. V. Volkotrub Odesa National Polytechnic University, Chair of Theoretical and Experimental Nuclear Physics
  • I. V. Sharph Odesa National Polytechnic University, Chair of Theoretical and Experimental Nuclear Physics
  • V. D. Rusov Odesa National Polytechnic University, Chair of Theoretical and Experimental Nuclear Physics
Keywords: hadrons, reference frame, bound states of quarks, hadron scattering, state transformation

Abstract

The internal state of an aggregate of a few bound particles and its transformation, when changing from the reference frame, where this combined particle is at rest, to a reference frame, where it moves relativistically, have been considered. It is supposed that the internal state of the combined particle in its rest frame can be considered in the non-relativistic approximation. This internal state is shown to remain the same, when changing from one inertial reference frame to another one. In other words, a particle that is spherically symmetric in its rest frame does not change its form in any other reference frame and does not undergo the Lorentz contraction in the direction of motion of any reference frame with respect to the rest one. A possible application of the results obtained to describe the scattering of hadrons considered as bound states of quarks has been discussed.

References

I.V. Sharf, A.V. Tikhonov, G.O. Sokhrannyi, K.V. Yatkin, M.A. Deliyergiev et al. Description of hadron inelastic scattering by the Laplace method and new mechanisms of cross-section growth. Ukr. Fiz. Zh. 56, 1151 (2011). 1046 ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 12 Internal States of Hadrons in Relativistic Reference Frames

I. Sharph, A. Tykhonov, G. Sokhrannyi, M. Deliyergiyev, N. Podolyan et al. On the role of longitudinal momenta in high energy hadron-hadron scattering. Central Eur. J. Phys. 10, 858 (2012) https://doi.org/10.2478/s11534-012-0056-5

I.V. Sharph et al. The new method of interference contributions accounting for inelastic scattering diagrams. arXiv: 1509.04329 (2015).

I.V. Sharf, K.K. Merkotan, N.A. Podolyan, D.A. Ptashynskyy, A.V. Tykhonov et al. Gluon loops in the inelastic processes in QCD. arXiv:1210.3490 (2012).

Yu.V. Volkotrub et al. Multiparticle field operators in quantum field theory. arXiv:1510.01937 (2015).

N. Chudak, M. Deliyergiyev, K. Merkotan, O. Potiyenko, D. Ptashynskyi, Y. Shabatura, G. Sokhrannyi, A. Tykhonov, Y. Volkotrub, I. Sharph, V. Rusov. Multiparticle quantum fields. Phys. J. 2, 181 (2016) [http://www.aiscience.org/journal/pj

R.P. Feynman. Photon-Hadron Interactions (Benjamin, 1972).

M. Diehl, D. Ostermeier, A. Schafer. Elements of a theory for multiparton interactions in QCD. J. High Energy Phys. 1203, 089 (2012) https://doi.org/10.1007/JHEP03(2012)089

M. Strikman. Transverse structure of the nucleon and multiparton interactions. Prog. Theor. Phys. Suppl. 187, 289 (2011). https://doi.org/10.1143/PTPS.187.289

A.P. Kobushkin, V.P. Shelest. Relativistic equations for bound quark systems. Teor. Mat. Fiz. 31, 156 (1977).

R.N Faustov. Relativistic wavefunction and form factors of the bound system. Ann. Phys. 78, 176 (1973) https://doi.org/10.1016/0003-4916(73)90007-9

E.E. Salpeter, H.A. Bethe. A Relativistic equation for bound state problems. Phys. Rev. 84, 1232 (1951) https://doi.org/10.1103/PhysRev.84.1232

A.A. Logunov, A.N. Tavkhelidze. Quasi-optical approach in quantum field theory. Nuovo Cimento 29, 380 (1963) https://doi.org/10.1007/BF02750359

S.J. Brodsky, H.-C. Pauli, S.S. Pinsky. Quantum chromodynamics and other field theories on the light cone. Phys. Rept. 301, 299 (1998) https://doi.org/10.1016/S0370-1573(97)00089-6

T. Heinzl. Light Cone Dynamics of Particles and Fields. PhD thesis (Regensburg Univ., 1998) [http://alice.cern.ch/format/showfull?sysnb=0300475

M.V. Terent’ev. On the structure of wave functions of mesons as bound quark states. Yad. Fiz. 24, 207 (1976).

P.A.M. Dirac. Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949) https://doi.org/10.1103/RevModPhys.21.392

N.N. Bogoliubov, D.V. Shirkov. Introduction to the Theory of Quantized Fields (Wiley, 1980).

F.A. Berezin. The Method of Second Quantization (Academic Prfess, 1966).

M.A. Deliyergiyev, A.G. Kotanzhyan, K.K. Merkotan, N.O. Podolian, O.S. Potiyenko et al. Transformation of the nonrelativistic quantum system under transition from one inertial reference frame to another. arXiv:1307.2280v5 (2013).

I.M. Gelfand, G.E. Shilov Generalized Functions (Academic Press, 1964–1968).

V.A. Karmanov. Relativistic composite systems in the light front dynamics. Fiz. Elem. Chast. At. Yadra 19, 525 (1988) (in Russian).

L.H. Ryder, Quantum Field Theory (Cambridge Univ. Press, 1985).

Xiangdong Ji. Generalized parton distributions. Ann. Rev. Nucl. Part. Sci. 54, 413 (2004) https://doi.org/10.1146/annurev.nucl.54.070103.181302

C. Alexandrou, C.N. Papanicolas, M. Vanderhaeghen. Colloquium: The shape of hadrons. Rev. Mod. Phys. 84, 1231 (2012) https://doi.org/10.1103/RevModPhys.84.1231

I.M. Dremin. Elastic scattering of hadrons. Usp. Fiz. Nauk 183, 3 (2013) https://doi.org/10.3367/ UFNr.0183.201301a.0003

R. Conceicao, J. Dias de Deus, M. Pimenta. Proton–proton cross-sections: The interplay between density and radius. Nucl. Phys. A 888, 58 (2012) https://doi.org/10.1016/j.nuclphysa.2012.02.019

I.V. Sharph et al. The state of nonrelativistic quantum system in a relativistic reference frame. arXiv:1403.3114 [hep-ph] (2014).

A.A. Duviryak. Application of two-particle Dirac equation in meson spectroscopy. Zh. Fiz. Dosl. 10, 290 (2006).

Published
2019-01-04
How to Cite
Chudak, N., Merkotan, K., Ptashynskyy, D., Potiyenko, O., Deliyergiyev, M., Tikhonov, A., Sokhrannyi, G., Zharova, O., Berezovs’kyi, O., Voitenko, V., Volkotrub, Y., Sharph, I., & Rusov, V. (2019). Internal States of Hadrons in Relativistic Reference Frames. Ukrainian Journal of Physics, 61(12), 1033. https://doi.org/10.15407/ujpe61.12.1033
Section
Fields and elementary particles