Formation of Periodic Structures on the Solid Surface Under Laser Irradiation

  • O. O. Havryliuk O.O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
  • O. Yu. Semchuk O.O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
Keywords: laser-induced periodic structures, laser annealing, temperature profile, nanocrystals

Abstract

Advances in the development of technologies aimed at the production of periodic structures on the surface of semiconductors, metals, and insulators have been reviewed. Particular attention was paid to the formation of periodic structures under laser irradiation. The results of both theoretical calculations and experimental researches of the phenomenon concerned are presented.

References

Huin Cong Tu. Ph.D. thesis Research and Development of Laser Technology for the Modification of Electrophysical Characteristics of the Silicon–Silicon Dioxide System (St.-Petersburg National Research University of Information Technologies, Mechanics and Optics, 2014) (in Russian).

O.O. Havryliuk, O.Yu. Semchuk, O.V. Steblova, A.A. Evtukh, L.L. Fedorenko, O.L. Bratus, S.O. Zlobin, M. Karlsteen. Influence of laser annealing on SiO films properties. Appl. Surf. Sci. 336, 217 (2015).

https://doi.org/10.1016/j.apsusc.2014.11.066

A. Glowacki, S.K. Brahma, H. Suzuki, C. Boit. Systematic characterization of integrated circuit standard components as stimulated by scanning laser beam. IEEE Trans. Device Mater. Rel. 7, 31 (2007).

https://doi.org/10.1109/TDMR.2007.900056

F. Beaudoin, K. Sanchez, R. Desplats, P. Perdu, J.M. Nicot, J.P. Roux, M. Otte. Dynamic laser stimulation case studies. Microelectron. Rel. 45, 1538 (2005).

https://doi.org/10.1016/j.microrel.2005.07.061

O.O. Havryliuk, O.Yu. Semchuk, O.L. Bratus, A.A. Evtukh, O.V. Steblova, L.L. Fedorenko. Study of thermophysical properties of crystalline silicon and silicon-rich silicon oxide layers. Appl. Surf. Sci. 302, 213 (2014).

https://doi.org/10.1016/j.apsusc.2013.09.171

A.V. Dvurechenskii. Pulse oriented crystallization of solids (laser annealing). Soros Obrazov. Zh. 85, 108 (2004) (in Russian).

M. Baumeister, T. Scholz, K. Dickmann, F. Vollersten. Influence of Mie-scattering on high-speed micro-perforation considering brilliant laser radiation. J. Laser Appl. 22, No. 2, 48 (2010).

https://doi.org/10.2351/1.3455821

M.A. Vasiliev, M.M. Nishchenko, P.A. Gurin. Laser modification of the surface of titanium implants. Usp. Fiz. Met. 11, 209 (2010).

https://doi.org/10.15407/ufm.11.02.209

R. Varache. Ph.D. thesis Development, Characterization and Modeling of Interfaces for High Efficiency Silicon Heterojunction Solar Cells (Technische Universit¨at Berlin, 2012).

A. Medvid, I. Dmitruk, P. Onufrijevs, I. Pundyk. Properties of nanostructure formed on SiO2/Si interface by laser radiation. Solid State Phenom. 131–133, 559 (2008).

https://doi.org/10.4028/www.scientific.net/SSP.131-133.559

A. Medvid, P. Onufrijevs, R. Jarimaviciute-Gudaitiene, E. Dauksta, I. Prosycevas. Formation mechanisms of nano and microcones by laser radiation on surfaces of Si, Ge, and SiGe crystals. Nanoscale Res. Lett. 8, 264 (2013).

https://doi.org/10.1186/1556-276X-8-264

A. Borowiec, H.K. Haugen. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82, 4462 (2003).

https://doi.org/10.1063/1.1586457

B.K. Nayak, M.C. Gupta. Ultrafast laser-induced selforganized conical micro/nano surface structures and their origin. Opt. Lasers Eng. 48, 966 (2010).

https://doi.org/10.1016/j.optlaseng.2010.05.009

V. Sava, T.L. Mitran, G. Socol, S. Antohe. Silicon surface structuring by XeCl excimer laser irradiation in atmospheric conditions. Digest J. Nanomater. Biostruct. 8, 61 (2013).

B.K. Nayak, M.C. Gupta, K.W. Kolasinski. Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation. Appl. Phys. A 90, 399 (2008).

https://doi.org/10.1007/s00339-007-4349-2

L.A. Golovan, I.O. Djun, A.E. Dokukina, S.V. Zabotnov, A.A. Ezhov, P.K. Kashkarov, N.E. Maslova, I.O. Ostapenko, V.I. Panov, V.U. Timoshenko. AFM investigation of nanoparticles formed on silicon surface by femtosecond laser pulses. Bull. Russ. Acad. Sci. Phys. 73, 39 (2009).

https://doi.org/10.3103/S1062873809010122

M. Bolle, S. Lazare. Characterization of submicrometer periodic structures produced on polymer surfaces with lowfluence ultraviolet laser radiation. J. Appl. Phys. 73, 3516 (1993).

https://doi.org/10.1063/1.352957

J.F. Young, J.S. Preston, H.M. Driel, J.E. Sipe. Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Phys. Rev. B 27, 1155 (1983).

https://doi.org/10.1103/PhysRevB.27.1155

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallinich, A. Ostendorf, B.N. Chichkov. Towards nanostructuring with femtosecond laser pulses. Appl. Phys. A 77, 229 (2003).

https://doi.org/10.1117/12.498496

T.H.R. Crawford, A. Borowiec, H.K. Haugen. Femtosecond laser micromachining of grooves in silicon with 800 nm pulses. Appl. Phys. A 80, 1717 (2005).

https://doi.org/10.1007/s00339-004-2941-2

I.A. Ostapenko, S.V. Zabotnov, G.D. Shandybina, L.A. Golovan', A.V. Chervyakov, Yu.V. Ryabchikov, V.V. Yakovlev, V.Yu. Timoshenko, V.K. Kashkarov. Micro- and nanostructuring of the crystalline silicon surface under the action of femtosecond laser pulses. Izv. Ross. Akad. Nauk Ser. Fiz. 70, 1315 (2006) (in Russian).

K.E. Lapshin, A.Z. Obidin, V.N. Tokarev, V.Yu. Khomich, V.A. Shmakov, V.A. Yamshchikov. Formation of nanostructures on the silicon nitride surface under irradiation of F[2] laser. Fiz. Khim. Obrab. Mater. 1, 43 (2008) (in Russian).

G. Miyaji, K. Miyazaki. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses. Opt. Express 16, 16265 (2008).

https://doi.org/10.1364/OE.16.016265

M. Shen, J.E. Carey, C.H. Crouch, M. Kandyla, H.A. Stone, E. Mazur. High-density regular arrays of nanometerscale rods formed on silicon surfaces via femtosecond laser irradiation in water. Nano Lett. 8, 2087 (2008).

https://doi.org/10.1021/nl080291q

C. Radu, S. Simion, M. Zamfirescu, M. Ulmeanu, M. Enculescu, M. Radoiu. Silicon structuring by etching with liquid chlorine and fluorine precursors using femtosecond laser pulses. J. Appl. Phys. 110, 1063 (2011).

https://doi.org/10.1063/1.3619856

N.D. Vorzobova, Yu.E. Burunkova, V.G. Bulgakova, I.Yu. Denisyuk, N.M. Kalinin. Preparation of periodic structures in polymeric UV-hardened composite materials by laser interference lithography. Izv. Vyssh. Ucheb. Zaved. Priborostr. 54, No. 12, 62 (2011) (in Russian).

J. Heitz, B. Reisinger, V. Fahrner. In Proceeding of the International Conference on Transparent Optical Networks (Coventry, 2012), p. 1.

E. Rebollar, J. V’azquez de Aldana, I. Mart’ın-Fabiani, M. Hernandez, D.R. Rueda, T.A. Ezquerra, C. Domingo, P. Moreno, M. Castillejo. Assessment of femtosecond laser induced periodic surface structures on polymer films. Phys. Chem. Chem. Phys. 15, 11287 (2013).

https://doi.org/10.1039/c3cp51523k

Yu.K. Veryovkin, N.G. Bronnikova, V.V. Korolikhin, Yu.Yu. Gushina, V.N. Petryakov, D.O. Filatov, N.M. Bityurin, A.V. Kruglov, V.V. Levichev. Formation of twodimensional periodic nanostructures on the surface of fused quartz, polyimide, and polycrystalline diamond using the method of pulsed four-beam laser interference modification. Zh. Tekhn. Fiz. 73, N 6, 99 (2003) (in Russian).

S.V. Makarov. Ph.D. thesis Nano- and microstructuring of metal and semiconductor surfaces in the air under the action of femtosecond laser pulses. (Lebedev Fiz. Inst. Ross. Akad. Nauk, 2014) (in Russian).

S.A. Akhmanov, V.I. Emel'yanov, N.I. Koroteev, V.N. Semynogov. Influence of high-power laser radiation on the surface of semiconductors and metals: nonlinear optical effects and nonlinear-optical diagnostics. Usp. Fiz. Nauk 147, 675 (1985) (in Russian).

https://doi.org/10.3367/UFNr.0147.198512b.0675

S.V. Zabotnov, I.A. Ostapenko, L.A. Golovan, V.Yu. Timoshenko, P.K. Kashkarov, G.D. Shandybina. Thirdharmonic generation from a silicon surface structured by femtosecond laser pulses. Quant. Electron. 35, 943 (2005).

https://doi.org/10.1070/QE2005v035n10ABEH013011

T. Scheidt, E.G. Rohwer, H.M. von Bergmann, H. Stafast. Charge-carrier dynamics and trap generation in native Si/SiO2 interfaces probed by optical second-harmonic generation. Phys. Rev. B 69, 165314 (2004).

https://doi.org/10.1103/PhysRevB.69.165314

P.H. Neethling, T. Scheidt, E.G. Rohwer. Second harmonic generation as a technique to probe buried interfaces: research letter. South African J. Sci. 105, 282 (2009), http://hdl.handle.net/10520/EJC96944.

V.P. Veiko, A.M. Skvortsov, V.I. Sokolov, Ph. Q. Tung, R.A. Khalecki, E.I. Efimov. Effect of laser irradiation on the structures properties such as SiO2/Si. Proc. SPIE 7996, 79960S (2010).

https://doi.org/10.1117/12.889523

Z.Yu. Gotra, S.A. Osered'ko. Control of the surface layer properties in microelectronic technology with the help of laser light. Zarubezh. Elektron. Tekhn. 12, 3 (1985) (in Russian).

J. Hl’avka, H. Jel’ınkov’a, K. Hamal, V. Prochock’y. Pulsed laser-induced recombination centers in silicon. J. Appl. Phys. 56, 1245 (1984).

https://doi.org/10.1063/1.334061

E.I. Gurevich, S.V. Gurevich. Laser induced periodic surface structures induced by surface plasmons coupled via roughness. Appl. Surf. Sci. 302, 118 (2014) .

https://doi.org/10.1016/j.apsusc.2013.10.141

S.I. Anisimov, B.S. Luk'yanchuk. Selected problems of laser ablation theory. Phys. Usp. 45, 293 (2002).

https://doi.org/10.1070/PU2002v045n03ABEH000966

Z. Wang, J. Li, X. Huang. Patterned structures of silicon nanocrystals prepared by laser annealing. Solid State Commun. 117, 383 (2001).

https://doi.org/10.1016/S0038-1098(00)00463-4

J. Richter, J. Meinertz, J. Ihlemann. Patterned laser annealing of silicon oxide films. Appl. Phys. A 104, 759 (2011).

https://doi.org/10.1007/s00339-011-6451-8

D. Wang, J. Ihlemann, P. Schaaf. Complex patterned gold structures fabricated via laser annealing and dealloying. Appl. Surf. Sci. 302, 74 (2014) .

https://doi.org/10.1016/j.apsusc.2013.12.066

J. Bonse, J. Kr¨uger, S. H¨ohm, A. Rosenfeld. Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24, 042006 (2012).

https://doi.org/10.2351/1.4712658

S. Richter, M. Heinrich, S. D¨oring. Nanogratings in fused silica: Formation, control, and applications. J. Laser Appl. 24, 042008 (2012).

https://doi.org/10.2351/1.4718561

I. Mingareev, T. Bonhoff, A. El-Sherif. Femtosecond laser post-processing of metal parts produced by laser additive manufacturing. J. Laser Appl. 25, 052009 (2013).

https://doi.org/10.2351/1.4824146

B. Tan, K. Venkatakrishnan. A femtosecond laser-induced periodical surface structure on crystalline silicon. J. Micromech. Microeng. 16, 1080 (2006).

https://doi.org/10.1088/0960-1317/16/5/029

Y. Huang, S. Liu, W. Li, Y. Liu, W. Yang. Two-dimensional periodic structure induced by single-beam femtosecond laser pulses irradiating titanium. Opt. Express 17 (23), 20756 (2009).

https://doi.org/10.1364/OE.17.020756

T. Huynh, A. Petit, N. Semmar. Picosecond laser induced periodic surface structure on copper thin films. Appl. Surf. Sci. 302, 109 (2014).

https://doi.org/10.1016/j.apsusc.2013.10.172

J.Z.P. Skolski, G.R.B.E. Romer, J.V. Obona, V. Ocelik, A.J. Huis in't Veld, J.Th.M. De Hosson. Laser-induced periodic surface structures: Fingerprints of light localization. Phys. Rev. B 85, 075320 (2012).

https://doi.org/10.1103/PhysRevB.85.075320

T.J.-Y. Derrien, R. Torres, T. Sarnet, M. Sentis, T.E. Itina. Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments. Appl. Surf. Sci. 258, 9487 (2012).

https://doi.org/10.1016/j.apsusc.2011.10.084

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N.N. Nedyalkov, M. Obara. Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates. Opt. Express 19, 19093 (2011).

https://doi.org/10.1364/OE.19.019093

M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano 3, 4062 (2009).

https://doi.org/10.1021/nn900654v

J. Wang, C. Guo. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals. Appl. Phys. Lett. 87, 251914 (2005).

https://doi.org/10.1063/1.2146067

T. Apostolova, A.A. Ionin, S.I. Kudryashov, L.V. Seleznev, D.V. Sinitsyn. Self-limited ionization in bandgap renormalized GaAs at high femtosecond laser intensities. Opt. Eng. 51, 121808 (2012).

https://doi.org/10.1117/1.OE.51.12.121808

Z. Zhang, Z. Wang, D. Wang, Y. Ding. Periodic antireflection surface structure fabricated on silicon by four-beam laser interference lithography. J. Laser Appl. 26, 012010 (2014).

https://doi.org/10.2351/1.4849715

M. Ellman, A. Rodr’ıguez, N. P’erez, M. Echeverria, Y. Verevkin, C. Peng, T. Berthou, Z. Wang, S. Olaizola, I. Ayerdi. High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation. Appl. Surf. Sci. 255, 5537 (2009).

https://doi.org/10.1016/j.apsusc.2008.07.201

O.O. Havryliuk, O.Yu. Semchuk. Propagation of temperature profiles in non-stoichiometric SiO films at two-beam laser annealing. Fiz. Khim. Tverd. Tila 15, 862 (2014) (in Ukrainian).

O.O. Havryliuk. Theoretical study on laser annealing of non-stoichiometric SiO films. Khim. Fiz. Tekhnol. Poverkhni 5, 461 (2014).

Published
2018-12-23
How to Cite
Havryliuk, O., & Semchuk, O. (2018). Formation of Periodic Structures on the Solid Surface Under Laser Irradiation. Ukrainian Journal of Physics, 62(1), 20. https://doi.org/10.15407/ujpe62.01.0020
Section
Optics, lasers, and quantum electronics