Electrical Properties of Silicon-Oxide Heterostructures on the Basis of Porous Silicon

  • I. B. Olenych Ivan Franko National University of L’viv
  • L. S. Monastyrskyi Ivan Franko National University of L’viv
  • B. P. Koman Ivan Franko National University of L’viv
Keywords: porous silicon, silicon-oxide film, current-voltage characteristic, conductivity activation energy, thermally stimulated depolarization


The processes of charge-carrier transport and relaxation in silicon-oxide heterostructures based on porous silicon have been studied, by using voltammetric measurements and thermoactivation spectroscopy. The temperature dependences of the conductivity in experimental structures are measured in an interval of 80–325 K, and the activation energy of the electrical conductivity is determined. On the basis of the temperature dependences obtained for the depolarization current, the energy distribution of localized electron states, which affect the charge transport processes, is calculated. The influence of coating the porous silicon layer with a thin SiOx film on the electrical properties of the layer is analyzed. The obtained results extend the application scope of silicon-oxide nanosystems.


J. Robertson. High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327 (2006).

A. Dutta, S. Oda, Y. Fu, M. Willander. Electron transport in nanocrystalline Si-based single electron transistors. Jpn. J. Appl. Phys. 39, 4647 (2000).

G.G. Kareva, M.I. Vexler. Electrical phenomena in a metal/nanooxide/p+-silicon structure during its transformation to a resonant-tunneling diode. Semiconductors 47, 1084 (2013).

V.A. Gritsenko, K.A. Nasyrov, Yu.N. Novikov, A.L. Aseev, S.Y. Yoon, Jo-Won Lee, E.-H. Lee, C.W. Kim. A new low voltage fast SONOS memory with high-k dielectric. Solid-State Electron. 47, 1651 (2003).

S. Watanabe, M. Maeda, T. Sugisaki, K. Tsutsui. Fluoride resonant tunneling diodes on Si substrates improved by additional thermal oxidation process. Jpn. J. Appl. Phys. 44, 2637 (2005).

V.D. Kalganov, N.V. Mileshkina, E.V. Ostroumova. Tunnel emission of electrons in photo-field detectors and in an Auger transistor in very strong electric fields. Semiconductors 37, 354 (2003).

N. Asli, M.I. Vexler, A.F. Shulekin, P.D. Yoder, I.V. Grekhov, P. Seegebrecht. Threshold energies in the light emission characteristics of silicon MOS tunnel diodes. Microelect. Reliability 41, 1071 (2001).

K. Yano, T. Ishi, T. Hashimoto, T. Kobayashi, F. Murai, K. Seki. Room-temperature single-electron memory. IEEE Trans. Electron. Dev. 41, 1628 (1994).

A.G. Cullis, L.T. Canham, P.D.J. Calcott. The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909 (1997).

O. Bisi, S. Ossicini, L. Pavesi. Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1 (2000).

L.S. Monastyrskii, T.I. Lesiv, I.B. Olenych. Composition and properties of thin solid films on porous silicon surface. Thin Solid Films 343–344, 335 (1999).

I.B. Olenych. Stabilisation of surface and photoluminescent properties of porous silicon. Ukr. J. Phys. Opt. 12, 54 (2011).

L.M. Sorokin, L.V. Grigor’ev, A.E. Kalmykov, V.I. Sokolov. Structural properties and current transport in a nanocomposite formed on a silicon surface by oxidation of the porous layer. Phys. Solid State 47, 1365 (2005).

A.E. Pap, K. Kordas, G. Toth, J. Levoska, A. Uusimaki, J. Vahakangas, S. Leppavuor. Thermal oxidation of porous silicon: Study on structure. Appl. Phys. Lett. 86, 041501 (2005).

G. Maiello, S. La Monica, A. Ferrari, G. Masini, V.P. Bondarenko, A.M. Dorofeev, N.M. Kazuchits. Light guiding in oxidised porous silicon optical waveguides. Thin Solid Films 297, 311 (1997).

A.M. Dorofeev, N.V. Gaponenko, V.P. Bondarenko, E.E. Bachilo, N.M. Kazuchits, A.A. Leshok, G.N. Troyanova, N.N. Vorosov, V.E. Borisenko, H. Gnaser, W. Bock, P. Becker, H. Oechsner. Erbium luminescence in porous silicon doped from spin-on films. J. Appl. Phys. 77, 2679 (1995).

T. Nikitin, L. Khriachtchev. Optical and structural properties of Si nanocrystals in SiO2 films. Nanomaterials 5, 614 (2015).

D. Nesheva, C. Raptis, A. Perakis, I. Bineva, Z. Aneva, Z. Levi, S. Alexandrova, H. Hofmeister. Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films. J. Appl. Phys. 92, 4678 (2002).

N.S. Averkiev, L.P. Kazakova, N.N. Smirnova. Carrier transport in porous silicon. Semiconductors 36, 336 (2002).

O.V. Vakulenko, S.V. Kondratenko, B.M. Shutov. Varistorlike current-voltage characteristic of porous silicon. Semicond. Phys. Quant. Electron. Optoelectron. 2, 88 (1999).

D.I. Bilenko, O.Ya. Belobrovaya, E.A. Zharkova, I.B. Mysenko, E.I. Khasina. The effect of adsorption on the electrical properties of structures based on oxidized porous silicon. Semiconductors 36, 466 (2002).

L.V. Grigor’ev, A.E. Kalmykov, V.I. Sokolov, L.M. Sorokin. Transport properties of a heterogeneous composite: Thermally oxidized silicon micropowder. Tech. Phys. Lett. 33, 199 (2007).

Yu.A. Gorokhovatskii, G.A. Bordovskii. Thermally Stimulated Current Spectroscopy of High-Impedance Semiconductors and Insulators (Nauka, 1991) (in Russian).

I. Olenych, B. Tsizh, L. Monastyrskii, O. Aksimentyeva, B. Sokolovskii. Preparation and properties of nanocomposites of silicon oxide in porous silicon. Solid State Phenom. 230, 127 (2015).

How to Cite
Olenych, I., Monastyrskyi, L., & Koman, B. (2018). Electrical Properties of Silicon-Oxide Heterostructures on the Basis of Porous Silicon. Ukrainian Journal of Physics, 62(2), 166. https://doi.org/10.15407/ujpe62.02.0166