Vibrational IR Spectra of Solid Carbon Monoxide

  • M. D. Choudhury Department of Physics, Assam University of Silchar
  • R. Sen Department of Physics, S.S. College
  • B. I. Sharma Department of Physics, Assam University of Silchar
Keywords: vibrational spectra, Lie algebra, solid carbon monoxide

Abstract

The vibrational energy levels of solid carbon monoxide are calculated, by considering a local Hamiltonian with the Morse potential with the use of the U(2) algebra. Each bond of the molecule is changed by a corresponding Lie algebra, and, finally, the local Hamiltonian is constructed with the help of interacting Casimir and Majorana operators. Only the fundamental infrared stretching modes of vibration of solid carbon monoxide are then calculated, by using that Hamiltonian, and are compared with the experimental results.

References

D. Levine, C.E. Wulfman. Energy transfer to a Morse oscillator. Chem. Phys. Lett. 60, 372 (1979).

https://doi.org/10.1016/0009-2614(79)80591-6

F. Iachello. Algebraic methods for molecular rotation-vibration spectra. Chem. Phys. Lett. 78, 581 (1981).

https://doi.org/10.1016/0009-2614(81)85262-1

F. Iachello, R.D. Levine. Algebraic approach to molecular rotation-vibration spectra. I. Diatomic molecules. J. Chem. Phys. 77, 3046 (1982).

https://doi.org/10.1063/1.444228

F. Iachello, S. Oss. Algebraic methods in quantum mechanics: from molecules to polymers. Eur. Phys. J. D 19, 307 (2002).

https://doi.org/10.1140/epjd/e20020089

N.K. Sarkar, J. Choudhury, R. Bhattacharjee. An algebraic approach to the study of the vibrational spectra of HCN. Mol. Phys. 104, 3051 (2006).

https://doi.org/10.1080/00268970600954235

N.K. Sarkar, J. Choudhury, R. Bhattacharjee. Algebraic approach: Study of vibrational spectra of some linear triatomic molecules. Indian J. Phys. 82, 767 (2008).

R. Sen, A. Kalyan, N.K. Sarkar, R. Bhattacharjee. Stretching vibrational IR active spectra of carbon fullerenes. Fuller. Nanotub. Car. Nanostruct. 21, 861 (2013).

https://doi.org/10.1080/1536383X.2012.684177

R. Sen, A. Kalyan, R.S. Paul, N.K. Sarkar, R. Bhattacharjee. A study of vibrational spectra of fullerenes C70 and C80: An algebraic approach. Acta Phys. Polon. A 120, 407 (2011).

https://doi.org/10.12693/APhysPolA.120.407

R. Sen, A. Kalyan, R. Das, N.K. Sarkar, R. Bhattacharjee. Vibrational frequencies of buckminsterfullerene: An algebraic study. Spectrosc. Lett. 45, 273 (2012).

https://doi.org/10.1080/00387010.2011.610418

R. Sen, A. Kalyan, N.K. Sarkar, R. Bhattacharjee. Spectroscopic analysis of C20 isomers by the (2) algebraic model. Fuller. Nanotub. Car. Nanostruct. 21, 403 (2013).

https://doi.org/10.1080/1536383X.2011.629754

R. Sen, A. Kalyan, J. Choudhury, N.K. Sarkar, R. Bhattacharjee. U(2) Lie algebraic study of vibrational spectra of fullerene C80 and its epoxide C80–O. Ukr. J. Phys. 57 500 (2012).

A. Kalyan, R. Sen, N.K. Sarkar, R. Bhattacharjee. Infrared-active vibrational modes of fullerene C70. Fuller. Nanotub. Car. Nanostruct. 21, 429 (2013) .

https://doi.org/10.1080/1536383X.2011.629757

R. Sen, A. Kalyan, R. Bhattacharjee. Vibrational IR spectroscopy of small carbon clusters. J. Comput. Theor. Nanosci. 10, 821 (2013).

https://doi.org/10.1166/jctn.2013.2775

R. Sen, A. Kalyan, N. K. Sarkar, R. Bhattacharjee. Application of (2) algebraic model in the study of stretching vibrational spectra of large fullerenes C180 and C240. Fuller. Nanotub. Car. Nanostruct. 21, 725 (2013).

https://doi.org/10.1080/1536383X.2012.654543

R. Sen, A. Kalyan, R. Bhattacharjee. A study of the stretching vibrational spectra of C120O and C120O by (2) Lie algebra. J. Serb. Chem. Soc. 78, 85 (2013).

https://doi.org/10.2298/JSC120131074S

R. Sen, A. Kalyan, S.K. Singha, N.K. Sarkar, R. Bhattacharjee. A spectroscopic analysis of stretching vibrational IR spectra of polyatomic molecules: A review. Quantum Matter 2, (4), 321 (2013).

https://doi.org/10.1166/qm.2013.1063

S.K. Singha, A. Kalyan, R. Sen, R. Bhattacharjee. Successful applications of Lie algebraic model to analyze the vibrational spectra of fuorobenzene. Polycycl. Aromat. Comp. 34 (2) 135 (2014).

https://doi.org/10.1080/10406638.2013.861497

G.E. Ewing, G.C. Pimentel. Infrared spectrum of solid carbon monoxide. J. Chem. Phys. 35, 925 (1961).

https://doi.org/10.1063/1.1701239

S. Oss. Algebraic models in molecular spectroscopy. Adv. Chem. Phys. 93, 455 (1996).

https://doi.org/10.1002/9780470141526.ch8

F. Iachello, R.D. Levine. Algebraic Theory of Molecules (Oxford Univ. Press, 1995) [ISBN: 9780195080919].

F. Iachello, S. Oss. Model of coupled anharmonic oscillators and applications to octahedral molecules. Phys. Rev. Lett. 66, 2976 (1991).

https://doi.org/10.1103/PhysRevLett.66.2976

F. Iachello, S. Oss. Vibrational spectroscopy and intramolecular relaxation of benzene. J. Molec. Spectr. 153, 225 (1992).

https://doi.org/10.1016/0022-2852(92)90471-Y

K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A: Theory and Applications in Inorganic Chemistry (Wiley, 1997) [ISBN: 978- 0-471-74339-2].

K.P. Huber, G. Herzberg. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand, 1979) [ISBN: 0-442-23394-9].

https://doi.org/10.1007/978-1-4757-0961-2

Published
2018-12-23
How to Cite
Choudhury, M., Sen, R., & Sharma, B. (2018). Vibrational IR Spectra of Solid Carbon Monoxide. Ukrainian Journal of Physics, 62(2), 146. https://doi.org/10.15407/ujpe62.02.0146
Section
Solid matter