The Effective Mass of an Impurity Atom in the Bose Liquid with a Deformed Heisenberg Algebra

  • I. O. Vakarchuk Department for Theoretical Physics, Ivan Franko National University of Lviv
  • G. Panochko College of Natural Sciences, Ivan Franko National University of Lviv
Keywords: boson systems, deformed Heisenberg algebra, effective mass


We consider the movement of a 3He impurity atom in the Bose liquid. We suggest to describe the many-particle correlations between atoms of the Bose liquid, by using a deformed Heisenberg algebra. As generalized coordinates, we choose the collective variables that are the Fourier components of fluctuations of the density of Bose particles. The wave function of the investigated system in the zeroth approximation is the product of the wave function of the liquid helium-4 within deformed commutation relations between generalized coordinates and momenta and the plane wave of the impurity atom. We calculate the correction to the ground-state energy of the system “Bose liquid plus impurity” and the effective mass of the impurity atom 3He, by assuming that the boson-impurity interaction is a small perturbation.


M. Schecter, D.M. Gangardt, A. Kamendev. Dynamics and Bloch oscillations of mobile impurities in one-dimensional quantum liquids. Ann. Phys. 327, 639 (2012).

M. Rinek, C. Bruder. Efects of a single fermion in a Bose–Josephson junction. Phys. Rev. A 83, 023608 (2011).

S. Schmid, A. H¨arter, J.H. Denschlag. Dynamics of a cold trapped ion in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 133202 (2010).

W. Casteels, J. Tempere, J.T. Devreese. Bipolarons and multipolarons consisting of impurity atoms in a Bose–Einstein condensate. Phys. Rev. A 88, 013613 (2013).

Y.E. Shchadilova, F. Grusdt, A. Rubtsov, E. Demler. Polaronic mass renormalization of impurities in Bose–Einstein condensates: Correlated Gaussian-wave-function approach. Phys. Rev. A 93, 043606 (2016).

R.S. Christensen, J. Levinsen, G. Bruun. Quasiparticle properties of a mobile impurity in a Bose–Einstein condensate. Phys. Rev. Lett. 115, 160401 (2015) .

J.N. Fuch, D.M. Gangardt, T. Keilmann. Spin waves in a one-dimensional spinor Bose gas. Phys. Rev. Lett. 95 150402 (2015).

M.W. Reynolds, M.E. Hayden, W.N. Hardy. Hyperfne resonance of atomic deuterium at 1 K. J. Low. Temp. Phys. 84, 87 (1991).

L.A. Pe˜na, S. Giorgini. Impurity in a Bose–Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods. Phys. Rev. A 92, 033612 (2015).

V.A. Slusarev, M.A. Strzemechny. On the theory of the energy spectrum of He3 diluted mixtures in superfuid He4. Ukr. J. Phys. 14, 450 (1969) (in Russian).

T.B. Davison, E. Finberg. Theory of a He3 atom in liquid He4 at = 0. Phys. Rev. 178, 306 (1969).

W.E. Massey, C.W. Woo. Variational calculations on liquid He4 and He3. Phys. Rev. 164, 256 (1967).

J.C. Owen. Efective mass of one 3He atom in liquid 4He. Phys. Rev. B 23, 5815 (1981) [DOI: 10.1103/Phys RevB.23.5815].

I.O. Vakarchuk, V.V. Babin. Impurity efective mass in superfuid 4He. Condens. Matter Phys. 1, 161 (1998).

E.C. Svensson, V.F. Sears, A.D. Woods, P. Martel. Neutron-difraction study of the static structure factor and pair correlations in liquid 4He. Phys. Rev. B 21, 3638 (1980).

I.O. Vakarchuk, V.V. Babin. Low-temperature asymptotic behaviour of the impurity efective mass in superfuid 4He.J. Phys. Stud. 3, 468 (1999) (in Ukrainian).

J. Boronat, J. Casulleras. Quantum Monte Carlo study of static properties of one 3He atom in superfuid 4He. Phys. Rev. B 59, 8844 (1999).

E.A. Pashitskii. The role of pair correlations in the formation of the ground state and the elementary excitation spectrum in a superfuid Bose liquid (A review). Low. Temp. Phys. 25, 81 (1999).

R. Simmons, R.M. Mueller. Specifc heat of 3He/4He mixtures at low temperatures and high 3He concentrations. J. Phys. Suppl. 46, 201 (1996).

S. Will, T. Best, S. Braum. Coherent interaction of a single fermion with a small bosonic feld. Phys. Rev. Lett. 106, 115305 (2011).

A.J. Kempf. Uncertainty relation in quantum mechanics with quantum group symmetry. J. Math. Phys. 35, 4483 (1994).

I.O. Vakarchuk, G.I. Panochko. The theory of a many-boson system with the deformed Heisenberg algebra. Condens. Matter Phys. 3, 33002 (2015).

E. Krotscheck, M. Saarela, K. Schorkhuber, R. Zillich. Concentration dependence of the efective mass of 3He atoms in 3He–4He mixtures. Phys. Rev. Lett. 80, 4709 (1998).

I.O. Vakarchuk, G.I. Panochko. Impurity states in a many-boson system. J. Phys. Stud. 16, 4601 (2012).

How to Cite
Vakarchuk, I., & Panochko, G. (2018). The Effective Mass of an Impurity Atom in the Bose Liquid with a Deformed Heisenberg Algebra. Ukrainian Journal of Physics, 62(2), 123.
Soft matter