Flexoelectric Effect Impact on the Hysteretic Dynamics of the Local Electromechanical Response of Mixed Ionic-Electronic Conductors

  • A. N. Morozovska Institute of Physics, Nat. Acad. of Sci. of Ukraine, Taras Shevchenko Kiev National University, Physical Faculty, Chair of Theoretical Physics
  • M. D. Glinchuk I. Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • O. V. Varenyk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. Udod I. Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • C. M. Scherbakov Taras Shevchenko Kiev National University, Physical Faculty, Chair of Theoretical Physics
  • S. V. Kalinin Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
Keywords: flexoelectric effect, mixed ionic-electronic moderate conductors, thin films, nanoparticles, electrochemical strain microscopy

Abstract

Strong coupling among electrochemical potentials, concentrations of electrons, ions, and strains mediated by the flexoelectric effect is a ubiquitous feature of moderate conductors, in particular, MIECs, the materials of choice in devices ranging from electroresistive and memristive elements to ion batteries and fuel cells. Corresponding mechanisms that govern bias-concentration-strain changes (Vegard expansion, deformation potential, and flexoelectric effect) are analyzed. Notably, that the contribution of the flexoelectric coupling to a local surface displacement of the moderate conductors is a complex dynamic effect which may lead to the drastic changing of the material mechanical response, depending on the values of flexoelectric coefficients and other external conditions. Numerical simulations have shown that the flexoelectric impact on the mechanical response ranges from the appearance of additional strain components, essential changes of a hysteresis loop shape and orientation, and the appearance of complex twisted hysteresis loops.

References

A. Sawa. Resistive switching in transition metal oxides. Materials Today 11, 28 (2008).

https://doi.org/10.1016/S1369-7021(08)70119-6

B. Magyari-K¨ope, M. Tendulkar, S.-G. Park, H.D. Lee, Y. Nishi. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3. Nanotechnology 22, 254029 (2011).

https://doi.org/10.1088/0957-4484/22/25/254029

D.-Sh. Shang, L. Shi, J.-R. Sun, B.-G. Shen. Local resistance switching at grain and grain boundary surfaces of polycrystalline tungsten oxide films. Nanotechnology 22, 254008 (2011).

https://doi.org/10.1088/0957-4484/22/25/254008

Y. Kim, S. Kelly A. Morozovska, E.K. Rahani, E. Strelcov, E. Eliseev, S. Jesse, M. Biegalski, N. Balke, N. Benedek, D. Strukov, J. Aarts, I. Hwang, S. Oh, J.S. Choi, T. Choi, B.H. Park, V. Shenoy, P. Maksymovych, S. Kalinin. Mechanical control of electroresistive switching. Nano Lett. 13, 4068 (2013).

https://doi.org/10.1021/nl401411r

R. Waser, M. Aono. Nanoionics-based resistive switching memories. Nature Mater. 6, 833 (2007).

https://doi.org/10.1038/nmat2023

K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, R. Waser. TiO2 – a prototypical memristive material. Nanotechnology 22, 254001 (2011).

https://doi.org/10.1088/0957-4484/22/25/254001

A.N. Morozovska, E.A. Eliseev, S.V. Kalinin. Electromechanical probing of ionic currents in energy storage materials. Appl. Phys. Lett. 96, 222906 (2010)

https://doi.org/10.1063/1.3446838

A.N. Morozovska, E.A. Eliseev, N. Balke, S.V. Kalinin. Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms. J. Appl. Phys.108, 053712 (2010).

https://doi.org/10.1063/1.3460637

N. Balke, S. Jesse, A.N. Morozovska, E. Eliseev, D.W. Chung, Y. Kim, L. Adamczyk, R.E. Garcimatha, N. Dudney, S.V. Kalinin. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotechnol. 5, 749 (2010).

https://doi.org/10.1038/nnano.2010.174

A.N. Morozovska, E.A. Eliseev, O.V. Varenyk, Y. Kim, E. Strelcov, A. Tselev, N.V. Morozovsky, S.V. Kalinin. Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response. J. Appl. Phys. 116, 066808 (2014).

https://doi.org/10.1063/1.4891346

A.N. Morozovska, E.A. Eliseev, A.K. Tagantsev, S.L. Bravina, L.-Q. Chen, S.V. Kalinin. Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, Vegard strains, and flexoelectric effect. Phys. Rev. B 83, 195313 (2011).

https://doi.org/10.1103/PhysRevB.83.195313

A.N. Morozovska, E.A. Eliseev, G.S. Svechnikov, S.V. Kalinin. Nanoscale electromechanics of paraelectric materials with mobile charges: Size effects and nonlinearity of electromechanical response of SrTiO3 films. Phys. Rev. B 84, 045402 (2011).

https://doi.org/10.1103/PhysRevB.84.045402

A.N. Morozovska, E.A. Eliseev, S.V. Kalinin. Electrochemical strain microscopy with blocking electrodes: The role of electromigration and diffusion. J. Appl. Phys. 111, 014114 (2012).

https://doi.org/10.1063/1.3675508

A.N. Morozovska, E.A. Eliseev, S.L. Bravina, F. Ciucci, G.S. Svechnikov, L.-Q. Chen, S.V. Kalinin. Frequency dependent dynamical electromechanical response of mixed ionic-electronic conductors. J. Appl. Phys. 111, 014107 (2012).

https://doi.org/10.1063/1.3673868

L.O. Chua. Memristor – The missing circuit element. IEEE Trans. Circuit Theory 18, 507 (1971).

https://doi.org/10.1109/TCT.1971.1083337

L.O. Chua, S.M. Kang. Memristive devices and systems. Proc. IEEE 64, 209 (1976).

https://doi.org/10.1109/PROC.1976.10092

D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams. The missing memristor found. Nature 453, 80 (2008).

https://doi.org/10.1038/nature06932

D.B. Strukov, J.L. Borghetti, R.S. Williams. Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5 (9), 1058 (2009).

https://doi.org/10.1002/smll.200801323

Y. Gil, O.M. Umurhan, I. Riess. Properties of solid state devices with mobile ionic defects. Part I: The effects of motion, space charge and contact potential in metal|semiconductor|metal devices. Solid State Ionics 178, 1 (2007).

https://doi.org/10.1016/j.ssi.2006.10.024

Y. Gil, O.M. Umurhan, I. Riess. Properties of a solid state device with mobile dopants: Analytic analysis for the thin film device. J. Appl. Phys. 104, 084504 (2008).

https://doi.org/10.1063/1.2993618

D. Seol, S. Park, O.V. Varenyk, S. Lee, Ho Nyung Lee, Anna N. Morozovska, Y. Kim. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy. Scientific Reports 6, 30579 (2016).

https://doi.org/10.1038/srep30579

S.M. Allen, J.W. Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica 27 (6), 1085 (1979).

https://doi.org/10.1016/0001-6160(79)90196-2

X. Zhang, W. Shyy, A. M. Sastry. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910 (2007).

https://doi.org/10.1149/1.2759840

M. Tang, H.Y. Huang, N. Meethong, Y.H. Kao, W.C. Carter, Y.M. Chiang. Model for the particle size, overpotential, and strain dependence of phase transition pathways in storage electrodes: Application to nanoscale olivines. Chem. Mater. 21 (8), 1557 (2009).

https://doi.org/10.1021/cm803172s

M. Tang, W.C. Carter, J.F. Belak, Yet-Ming Chiang. Modeling the competing phase transition pathways in nanoscale olivine electrodes. Electrochimica Acta 56 (2), 969 (2010).

https://doi.org/10.1016/j.electacta.2010.09.027

V.S. Mashkevich, K.B. Tolpygo. Electrical, optical and elastic properties of diamond type crystals. Sov. Phys. JETP. 5 (3), 435 (1957).

A.K. Tagantsev. Electric polarization in crystals and its response to thermal and elastic perturbations. A Multinational Journal 35 (3–4), 119 (1991).

S.M. Kogan. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5 (10), 2069 (1964).

P.V. Yudin, A.K. Tagantsev. Fundamentals of flexoelectricity in solids. Nanotechnology 24 (43), 432001 (2013).

https://doi.org/10.1088/0957-4484/24/43/432001

P. Zubko, G. Catalan, A.K. Tagantsev. Flexoelectric effect in solids. Ann. Rev. Mater. Research 43, 387 (2013).

https://doi.org/10.1146/annurev-matsci-071312-121634

E.A. Eliseev, A.N. Morozovska, M.D. Glinchuk, R. Blinc. Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B 79 (16), 165433 (2009).

https://doi.org/10.1103/PhysRevB.79.165433

M.D. Glinchuk, E.A. Eliseev, A.N. Morozovska. Spontaneous flexoelectric effect in nanosystems (topical review). Ferroelectrics 500, 90 (2016).

https://doi.org/10.1080/00150193.2016.1214994

S.V. Kalinin, A.N. Morozovska. Multiferroics: Focusing light on flexoelectricity. Nature Nanotechnology 10, 916 (2015).

https://doi.org/10.1038/nnano.2015.213

D. Lee, A. Yoon, S.Y. Jang, J.G. Yoon, J.S. Chung, M. Kim, J.F.Scott, T.W. Noh. Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107 (5), 057602 (2011).

https://doi.org/10.1103/PhysRevLett.107.057602

A.N. Morozovska, M.D. Glinchuk. Flexo-chemo effect in nanoferroics as a source of critical size disappearance at size-induced phase transitions. J. Appl. Phys. 119 (9), 094109 (2016).

https://doi.org/10.1063/1.4942859

G. Catalan, B. Noheda, J. McAneney, L.J. Sinnamon, J.M. Gregg. Strain gradients in epitaxial ferroelectrics. Phys. Rev. B 72 (2), 020102 (2005).

https://doi.org/10.1103/PhysRevB.72.020102

M.S. Majdoub, R. Maranganti, P. Sharma. Understanding the origins of the intrinsic dead layer effect in nanocapacitors. Phys. Rev. B 79 (11), 115412 (2009).

https://doi.org/10.1103/PhysRevB.79.115412

A.N. Morozovska, E.A. Eliseev, Y.A. Genenko, I.S. Vorotiahin, M.V. Silibin, Y. Cao, Y. Kim, M.D. Glinchuk, S.V. Kalinin. Flexocoupling impact on size effects of piezoresponse and conductance in mixed-type ferroelectric semiconductors under applied pressure. Phys. Rev. B 94, 174101 (2016).

https://doi.org/10.1103/PhysRevB.94.174101

Y. Gil, Y. Tsur, O.M. Umurhan, I. Riess. Properties of solid state devices with significant impurity hopping conduction. J. Phys. D: Appl. Phys. 41, 135106 (2008).

https://doi.org/10.1088/0022-3727/41/13/135106

O.V. Varenyk, M.V Silibin, D.A Kiselev, E.A. Eliseev, S.V. Kalinin, A.N. Morozovska. Self-consistent modelling of electrochemical strain microscopy in mixed ionicelectronic conductors: Nonlinear and dynamic regimes. J. Appl. Phys. 118, 072015 (2015).

https://doi.org/10.1063/1.4927815

D.A. Freedman, D. Roundy, T.A. Arias. Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain. Phys. Rev. B 80, 064108 (2009).

https://doi.org/10.1103/PhysRevB.80.064108

X. Zhang, A.M. Sastry, W. Shyy. Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles. J. Electrochem. Soc. 155, A542 (2008).

https://doi.org/10.1149/1.2926617

H.-Ch. Chang, G. Jaffe. Polarization in electrolytic solutions. Part I. Theory. J. Chem. Phys. 20, 1071 (1952).

https://doi.org/10.1063/1.1700669

Published
2018-12-15
How to Cite
Morozovska, A., Glinchuk, M., Varenyk, O., Udod, A., Scherbakov, C., & Kalinin, S. (2018). Flexoelectric Effect Impact on the Hysteretic Dynamics of the Local Electromechanical Response of Mixed Ionic-Electronic Conductors. Ukrainian Journal of Physics, 62(4), 326. https://doi.org/10.15407/ujpe62.04.0328
Section
Solid matter