Behavior of the Gravitational System Close to The Planck Epoch

  • V. E. Kuzmichev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Kuzmichev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: quantum gravity, quantum geometrodynamics, cosmology

Abstract

The evolution of a quantum gravitational system (QGS) with the maximally symmetric geometry in the epoch close to the Planck one is investigated. The state vector of the QGS satisfies the set of wave equations which describes the time evolution of the quantum system in the space of quantum fields. It is shown that, for the time arrow from past to future, the state vector describes the QGS contracting for the negative values of the cosmic scale factor and expanding for its positive values. The intensity distributions of matter for two exactly solvable models of spatially closed and flat QGSs formed by dust and radiation are calculated. The analogies with known phenomena in quantum mechanics and optics are drawn.

References

P.A.M. Dirac. Proc. Roy. Soc. A 246, 333 (1958).

https://doi.org/10.1098/rspa.1958.0142

R. Arnowitt, S. Deser, C.M. Misner. In Gravitation: An Introduction to Current Research, edited by L. Witten (Wiley, 1962) [gr-qc/0405109].

B.S. DeWitt. In Gravitation: An Introduction to Current Research, edited by L. Witten (Wiley, 1962); Phys. Rev. 160, 1113 (1967).

J.A. Wheeler. In Battelle Rencontres, edited by C. DeWitt, J.A. Wheeler (Benjamin, 1968).

K.V. Kuchaˇr, C.G. Torre. Phys. Rev. D 43, 419 (1991).

https://doi.org/10.1103/PhysRevD.43.419

K.V. Kuchaˇr. In Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, edited by G. Kunstatter, D. Vincent, J. Williams (World Scientific, 1992).

https://doi.org/10.1142/1656

C.G. Torre. Phys. Rev. D 46, R3231 (1992).

https://doi.org/10.1103/PhysRevD.46.R3231

C.J. Isham. Structural issues in quantum gravity [grqc/9510063].

J.D. Brown, D. Marolf. Phys. Rev. D 53, 1835 (1996) [grqc/9509026].

https://doi.org/10.1103/PhysRevD.53.1835

V.E. Kuzmichev, V.V. Kuzmichev. Eur. Phys. J. C 23, 337 (2002) [astro-ph/0111438].

https://doi.org/10.1007/s100520100850

V.E. Kuzmichev, V.V. Kuzmichev. The Big-Bang quantum cosmology: The matter-energy production epoch. Acta Phys. Pol. B 39, 979 (2008) [arXiv:0712.0464 [gr-qc]].

V.E. Kuzmichev, V.V. Kuzmichev. Ukr. J. Phys. 53, 837 (2008).

F. Lund. Phys. Rev. D 8, 3253 (1973).

https://doi.org/10.1103/PhysRevD.8.3253

J. Demaret, V. Moncrief. Phys. Rev. D 21, 2785 (1980).

https://doi.org/10.1103/PhysRevD.21.2785

V.E. Kuzmichev, V.V. Kuzmichev. Acta Phys. Pol. B 39, 2003 (2008) [arXiv:0712.0465 [gr-qc]].

V.E. Kuzmichev, V.V. Kuzmichev. Acta Phys. Pol. B 40, 2877 (2009) [arXiv:0905.4142 [gr-qc]].

V.E. Kuzmichev, V.V. Kuzmichev. Ukr. J. Phys. 55, 626 (2010).

V.E. Kuzmichev, V.V. Kuzmichev. Acta Phys. Pol. B 44, 2051 (2013) [arXiv:1307.2383 [gr-qc]].

https://doi.org/10.5506/APhysPolB.44.2051

V.E. Kuzmichev. V.V. Kuzmichev. Ukr. J. Phys. 60, 664 (2015).

https://doi.org/10.15407/ujpe60.07.0664

V.E. Kuzmichev, V.V. Kuzmichev. Ukr. J. Phys. 61, 449 (2016).

https://doi.org/10.15407/ujpe61.05.0449

C. Patrignani et al. (Particle Data Group). Chin. Phys. C 40, 100001 (2016).

V.V. Kuzmichev. Yad. Fiz. 60, 1707 (1997);

Phys. Atom. Nuclei 60, 1558 (1997).

N. Kanekar, V. Sahni, Y. Shtanov. Recycling the universe using scalar fields. Phys. Rev. D 63, 083520 (2001).

https://doi.org/10.1103/PhysRevD.63.083520

D.H. Lyth, A. Riotto. Phys. Rep. 314, 1 (1999).

https://doi.org/10.1016/S0370-1573(98)00128-8

L.D. Landau, E.M. Lifshitz. Quantum Mechanics. Vol. 3 (Pergamon Press, 1965) [ISBN: 0-08-020940-8].

L.D. Landau, E.M. Lifshitz. The Classical Theory of Fields. Vol. 2 (Butterworth-Heinemann, 1975) [ISBN: 978-0750627689].

R.C. Tolman. Relativity, Thermodynamics and Cosmology (Clarendon, 1934) [ISBN: 0486653838].

A. Messiah. Quantum Mechanics. Vol. 1 (North-Holland, 1967) [ISBN: 0471597686].

W.G. Unruh. Can. J. Phys. 64, 128 (1986).

https://doi.org/10.1139/p86-019

L.J. Garay. Int. J. Mod. Phys. A 10, 145 (1995).

https://doi.org/10.1142/S0217751X95000085

A. Kempf, G. Mangano, R.B. Mann. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108 (1995).

https://doi.org/10.1103/PhysRevD.52.1108

S. Das, E.C. Vagenas. Can. J. Phys. 87, 233 (2009).

https://doi.org/10.1139/P08-105

A.W. Beckwith, S.S. Moskaliuk. Ukr. J. Phys. (in preparation).

Published
2018-12-15
How to Cite
Kuzmichev, V., & Kuzmichev, V. (2018). Behavior of the Gravitational System Close to The Planck Epoch. Ukrainian Journal of Physics, 62(6), 545. https://doi.org/10.15407/ujpe62.06.0545
Section
Astrophysics and cosmology