Phase Transitions at Dehydration of Glucose

  • L. A. Bulavin Taras Shevchenko National University of Kyiv
  • O. M. Alekseev Taras Shevchenko National University of Kyiv
  • Yu. F. Zabashta Taras Shevchenko National University of Kyiv
  • K. M. Kovalov Taras Shevchenko National University of Kyiv
  • M. M. Lazarenko Taras Shevchenko National University of Kyiv
  • S. Yu. Tkachov Taras Shevchenko National University of Kyiv
Keywords: phase transition, dehydration, dielectric permittivity, glucose

Abstract

The dielectric constant of the glucose–water system has been studied in the temperature interval from –180 to 120 ∘C and the frequency interval from 5 to 50 kHz. On the basis of the data obtained, the physical mechanism of dehydration of glucose has been proposed. The dehydration of glucose is shown to be a sequence of phase transitions: monohydrate–anhydride, fixed water–free water, the appearance of a water film on the surface of the glucose–water system, and the subsequent water evaporation.

References

R.F. Jackson, C.G. Silsbee.The solubility of dextrose in water. Sci. Papers Bureau Stand. 17, 715 (1922).

https://doi.org/10.6028/nbsscipaper.129

L.A. Bulavin, L.Yu. Vergun, Yu.F. Zabashta, K.O. Ogorodnik. Saccharide solutions under the action of a magnetic field. Ukr. J. Phys. 61, 583 (2016).

https://doi.org/10.15407/ujpe61.07.0583

O. Giron. Investigations of polymorphism and pseudo-polymorphism in pharmaceuticals by combined thermoanalytical techniques. J. Therm. Anal. Cal. 64, 37 (2001).

https://doi.org/10.1023/A:1011572610005

M. Mathlouthi, G. Benmessaoud. B. Roge. Role of water in the polymorphic transitions of small carbohydrates. Food Chem. 132, 1630 (2012).

https://doi.org/10.1016/j.foodchem.2011.11.103

N.S. Trasi, S.X. Boerrigter, S.R. Byrn, T.M. Carvajal. Investigating the effect of dehydration conditions on the compactability of glucose. Int. J. Pharm. 406, 55 (2011).

https://doi.org/10.1016/j.ijpharm.2010.12.042

H.B. Liu, X.C. Zhang. Dehydration kinetics of D-glucose monohydrate studied using THz time-domain spectroscopy. J. Chem. Phys. Lett. 429, 229 (2006).

https://doi.org/10.1016/j.cplett.2006.07.100

A.N. Alekseev, M.M. Lazarenko, M.V. Lazarenko, K.N. Kovalev, S.Yu. Tkachev. Study of dielectric properties in region of liquid-solid phase transition. Zavod. Lab. Diagn. Mater. 82, No. 9, 43 (2016) (in Russian).

A.N. Alekseev, L.A. Bulavin, Y.F. Zabashta, S.Yu. Tkachev. Models of hydration and isomeric transitions of glucose molecules in aqueous solutions. Russ. J. Phys. Chem. A 88, 803 (2014).

https://doi.org/10.1134/S0036024414050033

E.M. Lifshitz, L.P. Pitaevsky, Physical Kinetics (Pergamon Press, 1979).

B.N. Stepanenko. The Course of Organic Chemistry (Vysshaya Shkola, 1981) (in Russian).

J. Frenkel, Kinetic Theory of Liquids (Dover, 1955).

M. Volmer, Kinetik der Phasenbuildung (Steinkopff, 1939).

Published
2018-12-15
How to Cite
Bulavin, L., Alekseev, O., Zabashta, Y., Kovalov, K., Lazarenko, M., & Tkachov, S. (2018). Phase Transitions at Dehydration of Glucose. Ukrainian Journal of Physics, 62(6), 502. https://doi.org/10.15407/ujpe62.06.0502
Section
Soft matter

Most read articles by the same author(s)

1 2 > >>