Finite Larmor Radius Effects on a Test-Particle Diffusion

  • O. M. Cherniak Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V. I. Zasenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: finite Larmor radius, diffusion of particles, random field, numerical simulation

Abstract

Particle diffusion in a static random electric field across a uniform magnetic field is considered. Earlier, we have proposed the closure for the statistical equation that describes particle diffusion in the drift approximation with account for the effect of particle trapping. Here, a generalization of our approach for a finite Larmor radius is given. It is shown that the statistical characteristics of a particle ensemble found as solutions of the analytical model are consistent with the results of direct numerical simulations within a wide range of Larmor radii.

References

R.H. Kraichnan. Diffusion by a random velocity field. Phys. Fluids 13, 22 (1970).

https://doi.org/10.1063/1.1692799

S. Corrsin. Progress report on some turbulent diffusion research. Advances in Geophysics (Academic Press, 1959), 6, 441.

https://doi.org/10.1016/S0065-2687(08)60102-8

J.B. Taylor, B. McNamara. Plasma diffusion in two dimensions. Phys. Fluids 14, 1492 (1971).

https://doi.org/10.1063/1.1693635

J.D. Reuss, J.H. Misguich. Low-frequency percolation scaling for particle diffusion in electrostatic turbulence. Phys. Rev. E 54, 1857 (1996).

https://doi.org/10.1103/PhysRevE.54.1857

M.B. Isichenko. Percolation, statistical topography, and transport in random media. Rev. Mod. Phys. 64, 961 (1992).

https://doi.org/10.1103/RevModPhys.64.961

E.W. Montroll, M.F. Shlesinger. On the wonderful world of random walks. Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, ed. J.L. Lebowitz, M.F. Shlesinger (North-Holland, 1984), pp. 5–121.

R. Metzler, J. Klafter. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics reports 339, 1 (2000).

https://doi.org/10.1016/S0370-1573(00)00070-3

R. Balescu. Aspects of Anomalous Transport in Plasmas (IOP Pub., 2005).

https://doi.org/10.1201/9781420034684

M. Vlad, F. Spineanu, J.H. Misguich, R. Balescu. Diffusion with intrinsic trapping in two-dimensional incompressible stochastic velocity fields. Phys. Rev. E 58, 7359 (1998).

https://doi.org/10.1103/PhysRevE.58.7359

M. Vlad, F. Spineanu. Larmor radius effects on impurity transport in turbulent plasmas. Plasma Phys. Control. Fusion 47, 281 (2005).

https://doi.org/10.1088/0741-3335/47/2/006

M. Vlad, F. Spineanu, S-I. Itoh, M. Yagi, K. Itoh. Turbulent transport of ions with large Larmor radii. Plasma Phys. Control. Fusion 47, 1015 (2005).

https://doi.org/10.1088/0741-3335/47/7/004

T. Hauff, F. Jenko. Turbulent E × B advection of charged test particles with large gyroradii. Phys. Plasmas 13, 102309 (2006).

https://doi.org/10.1063/1.2360173

T. Hauff, F. Jenko. E×B advection of trace ions in tokamak microturbulence. Phys. Plasmas 14, 092301 (2007).

https://doi.org/10.1063/1.2768025

V.I. Zasenko, A.G. Zagorodny, O.M. Chernyak. Diffusion in a frozen random velocity field. Ukr. J. Phys. 56, 1007 (2011).

V.I. Zasenko, O.M. Cherniak, A.G. Zagorodny. Subensemble concept in 2d magnetized particle transport model. Problems of Atomic Science and Technology 106, 77 (2016).

O.M. Chernyak. Particle's diffusion in a two-dimesional random velocity field. Ukr. J. Phys. 60, 1196 (2015).

https://doi.org/10.15407/ujpe60.12.1196

G.I. Taylor. Diffusion by continuous movements. Proc. London Math. Soc. 20, 196 (1921).

O.M. Cherniak, V.I. Zasenko, A.G. Zagorodny. Finite Larmor radius effects on turbulent transport of test-particles. Problem of Atomic Science and Technology 106, 96 (2016).

Published
2018-12-15
How to Cite
Cherniak, O., & Zasenko, V. (2018). Finite Larmor Radius Effects on a Test-Particle Diffusion. Ukrainian Journal of Physics, 62(6), 495. https://doi.org/10.15407/ujpe62.06.0495
Section
Plasmas and gases