Modification of the Properties of InSe⟨b-Cd⟨FeSO4⟩⟩ Clathrate/Cavitate Complexes with Hierarchical Architecture at Their Synthesis in Crossed Electric and Light-Wave Fields

  • I. I. Grygorchak National University “Lviv Polytechnic”
  • O. I. Hryhorchak Ivan Franko National University of Lviv
  • F. O. Ivashchyshyn National University “Lviv Polytechnic”
Keywords: InSe, intercalation, clathrate, cavitand, cavitate, hierarchical structures, impedance spectroscopy, magnetoresistive effect

Abstract

A new technological approach is proposed for the synthesis of multilayered nanostructures, which provides them unique properties and extraordinary prospects of practical applications. In particular, the synthesis of the InSe⟨b-CD⟨FeSO4⟩⟩ nanostructure with hierarchical architecture in crossed electric and light-wave fields is shown to result in the abnormally strong positive magnetoresistance effect with giant magnetoresistance oscillations in a low-frequency interval of 10−3–10 Hz. The efficiency of applying the synthesized nanohybrid as an active element in gyrator-free delay nanolines controlled by the magnetic field and in magnetic-field sensors that are supersensitive at room temperatures is substantiated.

References

J.H. Choy, S.J. Kwon, G.S. Park. High- superconductors in the two-dimensional limit: [(Py-C H2 +1)2HgI4]-Bi2Sr2Ca −1Cu O (= 1 and 2). Science 280, 1589 (1998).

https://doi.org/10.1126/science.280.5369.1589

J.H. Choy, S.Y. Kwak, J.S. Park, Y.J. Jeong, J. Portier. Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. J. Am. Chem. Soc. 121, 1399 (1999).

https://doi.org/10.1021/ja981823f

I.I. Grygorchak, B.O. Seredyuk, K.D. Tovstyuk, B.P. Bakhmatyuk. High Frequency Capacitor Nanostructure Formation by Intercalation (Kluwer, 2002).

https://doi.org/10.1007/978-94-010-0389-6_45

S.A. Voitovych, I.I. Grygorchak, O.I. Aksimentyeva. Lateral semiconductive and polymer conductive nanolayered structures: Preparation, properties, and application. Mol. Cryst. Liq. Cryst. 497, 55 (2008).

https://doi.org/10.1080/15421400802458498

J.H. Choy, S.M. Peak, J.M. Oh, E.S. Jang. Intercalative route to heterostructured nanohybrids. Curr. Appl. Phys. 2, 489 (2002).

https://doi.org/10.1016/S1567-1739(02)00163-3

J.W. Steed, J.L. Atwood. Supramolecular Chemistry (Wiley, 2000).

T.M. Bishchanyuk, R.Ya. Shvets', I.I. Grygorchak, S.I. Budzulyak, L.S. Yablon', I.A. Klymyshyn. Thermodynamic and kinetic features of Li+-intercalation current formation in supramolecular ensembles of hierarchical architecture based on MSM-41 and expanded graphite with carbamide cavitand. Fiz. Khim. Tverd. Tila 14, 190 (2013) (in Ukrainian).

I.I. Grygorchak, F.O. Ivashchyshyn, O.I. Grygorchak, D.V. Matulka. Intercalated nanostructures with hierarchical supramolecular architecture: Obtaining, properties, application Zh. Fiz. Inzh. Poverkhn. 8, 284 (2010) (in Ukrainian).

T.M. Bishchaniuk, I.I. Grygorchak. Colossal magnetocapacitance effect at room temperature. Appl. Phys. Lett. 104, 203104 (2014).

https://doi.org/10.1063/1.4878403

R.M.A. Lies. Preparation and Crystal Growth of Materials with Layered Structures (Springer, 1977).

R.H. Friend, A.D. Yoffe. Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv. Phys. 36, 1 (1987).

https://doi.org/10.1080/00018738700101951

J.-M. Lehn. Supramolecular Chemistry. Concepts and Perspectives (Wiley-VCH, 1995).

https://doi.org/10.1002/3527607439

T.M. Bishchaniuk, O.V. Balaban, R.Ya. Shvets, I.I. Grygorchak, A.V. Fechan, B.A. Lukiyanets, F.O. Ivashchyshyn. Electronic processes and energy storage in inorganic/organic nanohybrids. Mol. Cryst. Liq. Cryst. 589, 132 (2014).

https://doi.org/10.1080/15421406.2013.872404

Z.B. Stoinov, B.M. Grafov, B. Savova-Stoinova, and V.V. Elkin, Electrochemical Impedance (Nauka, 1991) (in Russian).

E. Barsoukov, J. R. Macdonald. Impedance Spectroscopy. Theory, Experiment and Application (Wiley, 2005).

https://doi.org/10.1002/0471716243

M. Pollak, T.H. Geballe. Low-frequency conductivity due to hopping processes in silicon, Phys. Rev. 122, 1742 (1961).

https://doi.org/10.1103/PhysRev.122.1742

M.A. Ormont. Change of transport mechanism in the transition region from sublinearity to superlinearity in the frequency dependence of the conductivity in disordered semiconductors. Fiz. Tekh. Poluprovodn. 10, 1314 (2015) (in Russian).

M. Okutan, E. Basaran, H.I. Bakanb, F. Yakuphanoglu. AC conductivity and dielectric properties of Co-doped TiO2. Physica B 364, 300 (2005).

https://doi.org/10.1016/j.physb.2005.04.027

B.I. Shklovskii, A.L. Efros. Zero-phonon ac hopping conductivity of disordered systems. Zh. Eksp. Teor. Fiz. ` 81, 406 (1981) (in Russian).

I.G. Austin, N.F. Mott. Polarons in crystalline and noncrystalline materials. Adv. Phys. 18, 41 (1969).

https://doi.org/10.1080/00018736900101267

B.P. Zakharchenya, V.L. Korenev. Integrating magnetism into semiconductor electronics. Usp. Fiz. Nauk 175, 629 (2005) (in Russian).

https://doi.org/10.3367/UFNr.0175.200506d.0629

I. Mora-Sero, J. Bisquert. Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells. Nano Lett. 6, 640 (2006).

https://doi.org/10.1021/nl052295q

N.A. Penin. Negative capacitance in semiconductor structures. Fiz. Tekh. Poluprovodn. 30, 630 (1996) (in Russian).

J. Bisquert, H. Randriamahazaka, G. Garcia-Belmonte. Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry. Electrochim. Acta 51, 627 (2005).

https://doi.org/10.1016/j.electacta.2005.05.025

I.V. Stasyuk, O.V. Velychko. Studies of electronic states in strongly anisotropic layered structures with staged ordering. Zh. Fiz. Dosl. 18, 2002 (2014) (in Ukrainian).

I.V. Stasyuk, O.V. Velychko. Description of intercalated layered structures in the approach of Anderson periodic model. Preprint ICMP-14-07U (Institute of Condensed Matter Physics, Lviv, 2014) (in Ukrainian).

R. Andreichin. High-field polarization, photopolarization and photoelectret properties of high-resistance amorphous semiconductors. J. Electrostat. 1, 217 (1975).

https://doi.org/10.1016/0304-3886(75)90018-2

J.F. Fowler. X-Ray induced conductivity in insulating materials. Proc. R. Soc. Lond. A 236, 464 (1956).

https://doi.org/10.1098/rspa.1956.0149

M.H. Weiler, W. Zawadzki, B. Lax. Theory of tunneling, including photon-assisted tunneling, in semiconductors in crossed and parallel electric and magnetic fields. Phys. Rev. 163, 733 (1967).

https://doi.org/10.1103/PhysRev.163.733

M. Reine, Q.H.F. Vrehen, B. Lax. Photon-assisted magnetotunneling in germanium in parallel and crossed electric and magnetic fields. Phys. Rev. 163, 726 (1967).

https://doi.org/10.1103/PhysRev.163.726

T.M. Bishchanyuk, I.I. Grygorchak, F.O. Ivashchyshyn. Multilayered semiconductor clathrate-cavitand complexes with a fractal guest system. Fiz. Inzh. Poverkhn. 12, 360 (2014) (in Ukrainian).

Published
2018-12-13
How to Cite
Grygorchak, I., Hryhorchak, O., & Ivashchyshyn, F. (2018). Modification of the Properties of InSe⟨b-Cd⟨FeSO4⟩⟩ Clathrate/Cavitate Complexes with Hierarchical Architecture at Their Synthesis in Crossed Electric and Light-Wave Fields. Ukrainian Journal of Physics, 62(7), 625. https://doi.org/10.15407/ujpe62.07.0625
Section
Nanosystems