Electronic and Magnetic Properties of Spinel Co3O4 (111) Surface in GGA+U Approximation

  • I. Kupchak V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • N. Serpak V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
Keywords: spinel, cobalt oxide, magnetic surface structure

Abstract

The atomic structure and electronic properties of the spinel Co3O4 (111) surface are calculated within the methods of density functional theory. Possible types of the surface are analyzed, and their formation energies are calculated. Electron states formed at the surface by broken bonds are studied in detail, and their partial density of states is calculated. It is shown that, unlike the bulk of spinel, its surface has nontrivial magnetic properties, because Co atoms acquire an additional magnetic moment under near-surface conditions.

References

A. Walsh, S.-H. Wei, Y. Yan, M.M. Al-Jassim, J.A. Turner, M. Woodhouse, B.A. Parkinson. Structural, magnetic, and electronic properties of the Co–Fe–Al oxide spinel system: Density-functional theory calculations. Phys. Rev. B 76, 165119 (2007).

https://doi.org/10.1103/PhysRevB.76.165119

E. Meza, D. Alburquenque, J. Ortiz, J.L. Gautier. Lithium cobalt spinel oxide: A structural and electrochemical study. J. Chil. Chem. Soc. 53, 1494 (2008).

https://doi.org/10.4067/S0717-97072008000200010

D. Su, S. Dou and G. Wang. Sci. Rep. 4, 5767 (2014).

https://doi.org/10.1038/srep05767

X. Xie, Y. Li, Z.-Q. Liu, M. Haruta, W. Shen. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li–O2 batteries. Nature 458, 746 (2009).

https://doi.org/10.1038/nature07877

Y.-Z. Wang, Y.-X. Zhao, C.-G. Gao and D.-S. Liu. Origin of the high activity and stability of Co3O4 in lowtemperature CO oxidation. Catal. Lett. 125, 134 (2008).

https://doi.org/10.1007/s10562-008-9531-4

C. Ohnishi, K. Asano, S. Iwamoto, K. Chikama, M. Inoue. Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen. Catal. Today 120, 145 (2007).

https://doi.org/10.1016/j.cattod.2006.07.042

K. Schmidt-Szalowski, K. Krawczyk, J. Petryk. The properties of cobalt oxide catalyst for ammonia oxidation. Appl. Catal. A 175, 147 (1998).

https://doi.org/10.1016/S0926-860X(98)00206-3

M. Bajdich, M. Garcia-Mota, A. Vojvodic, J.K. Norskov, A.T. Bell. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521 (2013).

https://doi.org/10.1021/ja405997s

H.-J. Kim, J.-H. Lee. Highly sensitive and selective gas sensors using -type oxide semiconductors: Overview. Sens. Actuat. B 192, 607 (2014).

https://doi.org/10.1016/j.snb.2013.11.005

D.R. Miller, S.A. Akbar, P.A. Morris. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuat. B 204, 250 (2014).

https://doi.org/10.1016/j.snb.2014.07.074

Oxide Materials at the Two-Dimensional Limit, edited by F.P. Netzer, A. Fortunelli (Springer, 2016).

https://doi.org/10.1007/978-3-319-28332-6

J.S. Griffith. The Theory of Transition-Metal Ions (Cambridge Univ. Press, 1971).

W.L. Roth. The magnetic structure of Co3O4. J. Phys. Chem. Solids 25, 1 (1964).

https://doi.org/10.1016/0022-3697(64)90156-8

J. Noh, O.I. Osman, S.G. Aziz, P. Winget, J.-L. Bredas. Magnetite Fe3O4 (111) surfaces: Impact of defects on structure, stability, and electronic properties. Chem. Mater. 27, 5856 (2015).

https://doi.org/10.1021/acs.chemmater.5b02885

A. Montoya, B.S. Haynes. Periodic density functional study of Co3O4 surfaces. Chem. Phys. Lett. 502, 63 (2011).

https://doi.org/10.1016/j.cplett.2010.12.015

X.-L. Xu, Z.-H. Chen, Y. Li, W.-K. Chen, J.-Q. Li. Bulk and surface properties of spinel Co3O4 by density functional calculations. Surf. Sci. 603, 653 (2009).

https://doi.org/10.1016/j.susc.2008.12.036

J. Chen, A. Selloni. Electronic states and magnetic structure at the Co3O4(110) surface: A first-principles study. Phys. Rev. B 85, 85306 (2012).

https://doi.org/10.1103/PhysRevB.85.085306

J.M. Perez-Mato, S.V. Gallego, E.S. Tasci, L. Elcoro, G. de la Flor, M.I. Aroyo. Symmetry-based computational tools for magnetic crystallography. Annu. Rev. Mater. Res. 45, 217 (2015).

https://doi.org/10.1146/annurev-matsci-070214-021008

Y.E. Kitaev, P. Tronc. Ferromagnetic and antiferromagnetic ordering in the wurtzite-type diluted magnetic semiconductors. Phys. Solid State 54, 520 (2012);

https://doi.org/10.1134/S1063783412030146

Y.E. Kitaev, P. Tronc. Ferromagnetic and antiferromagnetic ordering in the wurtzite-type diluted magnetic semiconductors. Phys. Solid State 54, 520 (2012); P. Tronc, private communication.

P. Giannozzi, S. Baroni, N. Bonini et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

https://doi.org/10.1088/0953-8984/21/39/395502

J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

https://doi.org/10.1103/PhysRevLett.77.3865

J. Hubbard. Electron correlations in narrow energy bands. Proc. R. Soc. London A 276, 238 (1963).

https://doi.org/10.1098/rspa.1963.0204

J.D. Pack, H.J. Monkhorst. "Special points for Brillouinzone integrations" – a reply. Phys. Rev. B 16, 1748 (1977).

https://doi.org/10.1103/PhysRevB.16.1748

M. Methfessel, A.T. Paxton. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989).

https://doi.org/10.1103/PhysRevB.40.3616

A. Soon, M. Todorova, B. Delley, C. Stampfl. Thermodynamic stability and structure of copper oxide surfaces: A first-principles investigation. Phys. Rev. B 75, 125420 (2007).

https://doi.org/10.1103/PhysRevB.75.125420

G.J. Martyna, M.E. Tuckerman. A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters. J. Chem. Phys. 110, 2810 (1999).

https://doi.org/10.1063/1.477923

W. Meyer, K. Biedermann, M. Gubo, L. Hammer, K. Heinz. Surface structure of polar Co3O4(111) films grown on Ir(100)-(1x1). J. Phys.: Condens. Matter 20, 265011 (2008).

https://doi.org/10.1088/0953-8984/20/26/265011

P. Ferstl et al. Adsorption and activation of CO on Co3O4 (111) thin films. J. Phys. Chem. C 119, 16688 (2015).

https://doi.org/10.1021/acs.jpcc.5b04145

S.C. Petitto, E.M. Marsh, G.A. Carson, M.A. Langell. Cobalt oxide surface chemistry: The interaction of CoO (100), Co3O4 (110) and Co3O4 (111) with oxygen and water. J. Mol. Catal. A 281, 49 (2008).

https://doi.org/10.1016/j.molcata.2007.08.023

W. Geertsma, D. Khomskii. Influence of side groups on 90∘ superexchange: A modification of the Goodenough– Kanamori–Anderson rules. Phys. Rev. B 54, 3011 (1996).

https://doi.org/10.1103/PhysRevB.54.3011

M.S. Martin-Gonz’alez et al. A solid-state electrochemical reaction as the origin of magnetism at oxide nanoparticle interfaces. J. Electrochem. Soc. 157, E31 (2010).

https://doi.org/10.1149/1.3272638

M.A. Garc’ıa et al. Surface magnetism in ZnO/Co3O4 mixtures. J. Appl. Phys. 107, 043906 (2010).

https://doi.org/10.1063/1.3294649

T.-L. Phan, N.X. Nghia, S.C. Yu. Raman scattering spectra and magnetic properties of polycrystalline Zn1− Co O ceramics. Solid State Commun. 152, 2087 (2012).

https://doi.org/10.1016/j.ssc.2012.08.026

Published
2018-12-13
How to Cite
Kupchak, I., & Serpak, N. (2018). Electronic and Magnetic Properties of Spinel Co3O4 (111) Surface in GGA+U Approximation. Ukrainian Journal of Physics, 62(7), 615. https://doi.org/10.15407/ujpe62.07.0615
Section
Solid matter