Aggregation of Nanoparticles in a Nematic Liquid Crystal

  • B. I. Lev Bogolyubov Institute for Theoretical Physics, NAS of Ukraine
Keywords: nanoparticles, nematic liquid crystal, collective effect, inhomogeneity

Abstract

We present a short review of our general result in [1], which concerns the behavior of a collection of nanoparticles in a nematic liquid crystal. Such liquid crystal colloids are studied for a long time, have highly peculiar characteristics, and have attracted a lot of the interest in different practical applications. A simple model of the aggregation of nanoparticles in a liquid crystal is proposed. With regard for the collective effect of the interaction between the small particles through a change in the scalar order parameter in a nematic liquid crystal, the inhomogeneous distribution of particles is predicted as distinct from possible structures in the system of macroscopic particles in a liquid crystal. The inhomogeneity length and the size of a cluster of nanoparticles are determined, and the possible peculiarities in the behavior of liquid crystals with introduced nanoparticles are described.

References

B.I. Lev. Cellular structure in condensed matter. Modern Phys. Lett. B 27, 1330020 (2013).

https://doi.org/10.1142/S0217984913300202

W.B. Russel, D.A. Saville, W.R. Schowaiter. Colloidal Dispersions (Cambridge Univ. Press, 1989).

https://doi.org/10.1017/CBO9780511608810

M.F. Prodanov, O.G. Buluy, E.V. Popova, S.A. Gamzaeva, Yu.O. Reznikov, V.V. Vashchenko. Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal. Soft Matter 12, 6601 (2016).

https://doi.org/10.1039/C6SM00906A

P. Poulin, H. Stark, T.C. Lubensky, D.A. Weitz. Novel Colloidal Interactions in Anisotropic Fluids. Science 275 (5307), 1770 (1997).

https://doi.org/10.1126/science.275.5307.1770

P. Poulin, D.A. Weitz. Inverted and multiple nematic emulsions. Phys. Rev. E 57, 626 (1998).

https://doi.org/10.1103/PhysRevE.57.626

P. Poulin, V. Cabuil, D.A. Weitz. Direct measurement of colloidal forces in an anisotropic solvent. Phys. Rev. Lett. 79, 4862 (1997).

https://doi.org/10.1103/PhysRevLett.79.4862

P. Poulin, V.A. Raghunathan, P. Richetti, D. Roux. On the dispersion of latex particles in a nematic solution. I. Experimental evidence and a simple model. J. Phys. II, France 4, 1557 (1994).

https://doi.org/10.1051/jp2:1994217

V.G. Anderson, E.M. Terentjev, S.P. Meeker, J.Crain, W.G. K. Poon. Cellular solid behaviour of liquid crystal colloids 1. Phase separation and morphology. Eur. Phys. E 4, 11 (2001).

https://doi.org/10.1007/PL00013680

V.G. Anderson, E.M. Terentjev. Cellular solid behaviour of liquid crystal colloids 2. Mechanical properties. Eur. Phys. E 4, 21 (2001).

https://doi.org/10.1007/s101890170138

V. Nazarenko, A. Nych, B. Lev. Crystal structure in nematic emulsion. Phys. Rev. Lett. 87, 075504 (2001).

https://doi.org/10.1103/PhysRevLett.87.075504

K.M. Aoki, B.I. Lev, H. Yokoyama. Cluster formation of colloids in nematics. Molecular Crystals and Liquid Crystals 367, 537 (2001).

https://doi.org/10.1080/10587250108028674

B.I. Lev, K.M. Aoki, P.M. Tomchuk, H. Yokoyama. Structure formation of colloids in nematic liquid crystals. Cond. Matter Phys. 6, 169 (2003).

https://doi.org/10.5488/CMP.6.1.169

S.B. Chernyshuk, B.I. Lev, H. Yokoyama. Paranematic interaction between nanoparticles of ordinary shape. Phys. Rev. E 71, 062701 (2005).

https://doi.org/10.1103/PhysRevE.71.062701

B.I. Lev, S.B. Chernyshuk, T. Yamamoto, J. Yamamoto, H. Yokoyama. Photochemical switching between colloidal photonic crystals at the nematic-air interface. Phys. Rev. E 78, 020701 (2008).

https://doi.org/10.1103/PhysRevE.78.020701

H. L¨owen. Solvent-induced phase separation in colloidal fluids. Phys. Rev. Lett. 74, 1028, (1995).

https://doi.org/10.1103/PhysRevLett.74.1028

J. Loudet, P. Barois, P. Poulin. Colloidal ordering from phase separation in a liquid-crystalline continuous phase. Nature 407, 611 (2000).

https://doi.org/10.1038/35036539

P. Poulin, H. Stark, T.C. Lubensky, D.A. Weitz. Novel colloidal interactions in anisotropic fluids. Science 275, 1770 (1997).

https://doi.org/10.1126/science.275.5307.1770

I. Muˇseviˇc, M. Skarabot. Self-assembly of nematic colloids. Soft Matter 4, 195 (2008);

https://doi.org/10.1039/B714250A

A. Borstnik, Y. Stark, S. Zumer. Interaction of spherical particles dispersed in a liquid crystal above the nematic-isotropic phase transition. Phys. Rev. E 60, 4210 (1999).

https://doi.org/10.1103/PhysRevE.60.4210

B.I. Lev, P.M. Tomchuk. Interaction of foreign macrodroplets in a nematic liquid crystal and induced supermolecular structures. Phys. Rev. E 59, 591 (1998).

https://doi.org/10.1103/PhysRevE.59.591

T.C. Lubensky, D. Pettey, N. Currier, H. Stark. Topological defects and interactions in nematic emulsions. Phys. Rev. E 57, 610 (1999).

https://doi.org/10.1103/PhysRevE.57.610

S.B. Chernyshuk, B.I. Lev. Elastic interaction between colloidal particles in confined nematic liquid crystals. Phys. Rev. E 81, 041701 (2010).

https://doi.org/10.1103/PhysRevE.81.041701

B.I. Lev, S.B. Chernyshuk, P.M. Tomchuk, H. Yokoyama. Symmetry breaking and interaction of colloidal particles in nematic liquid crystals. Phys. Rev. E 65, 021709 (2002).

https://doi.org/10.1103/PhysRevE.65.021709

S.B. Chernyshuk, B.I. Lev, H. Yokoyama. Collective effects in doped nematic liquid crystals. J. of Exper. Theor. Phys. 93, 760 (2001).

https://doi.org/10.1134/1.1420444

M. Tasinkevych, D. Andrienko. Effective triplet interactions in nematic colloids. Eur. Phys. J. E 21, 277 (2006);

https://doi.org/10.1140/epje/i2006-10065-5

M. Tasinkevych, S. Dietrich. Complete wetting of nanosculptured substrates. Phys. Rev. Lett. 97, 106102 (2006).

https://doi.org/10.1103/PhysRevLett.97.106102

P.G. de Gennes, J. Prost. The Physics of Liquid Cristals (Clarendon Press, 1993).

S.H. Chen, N.M. Amer. Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals. Phys. Rev. Lett. 51, 2298 (1983).

https://doi.org/10.1103/PhysRevLett.51.2298

B.J. Liang, S.C. Chen. Electric-field-induced molecular reorientation of a magnetically biased ferronematic liquidcrystal film. Phys. Rev. A 39, 1441 (1989).

https://doi.org/10.1103/PhysRevA.39.1441

S.V. Burylov, Yu.L. Raikher. Magnetic Fredericksz transition in a ferronematic. J. Magn. Magn. Mater 122, 62 (1993).

https://doi.org/10.1016/0304-8853(93)91040-E

S.V. Burylov, Yu.L. Raikher. Orientation of a solid particle embedded in a monodomain nematic liquid crystal. Phys. Rev. E 50, 358 (1994).

https://doi.org/10.1103/PhysRevE.50.358

B.I. Lev, A.Yu. Zhugaevich. Statistical description of model systems of interacting particles and phase transitions accompanied by cluster formation. Phys. Rev. E 57, 6460 (1998).

https://doi.org/10.1103/PhysRevE.57.6460

A. Borstnik, H. Stark, S. Zumer. Interaction of spherical particles dispersed in a liquid crystal above the nematicisotropic phase transition. Phys. Rev. E 60, 4210 (1999).

https://doi.org/10.1103/PhysRevE.60.4210

P. Galatola, J-B. Fournier. Nematic-wetted colloids in the isotropic phase: Pairwise interaction, biaxiality, and defects. Phys. Rev. Lett. 86, 3915 (2001).

https://doi.org/10.1103/PhysRevLett.86.3915

J-B. Fournier, P. Galatola. Anisotropic capillary interactions and jamming of colloidal particles trapped at a liquidfluid interface. Phys. Rev. E 65, 031601 (2002).

https://doi.org/10.1103/PhysRevE.65.031601

R.W. Ruhwandl, E.M. Terentjev. Long-range forces and aggregation of colloid particles in a nematic liquid crystal. Phys. Rev. E 55, 2958 (1997).

https://doi.org/10.1103/PhysRevE.55.2958

F. Brochard, and P.G. De Gennes. Theory of magnetic suspensions in liquid crystals. J. Phys.(Paris) 31, 691 (1970).

https://doi.org/10.1051/jphys:01970003107069100

Published
2018-12-13
How to Cite
Lev, B. (2018). Aggregation of Nanoparticles in a Nematic Liquid Crystal. Ukrainian Journal of Physics, 62(7), 599. https://doi.org/10.15407/ujpe62.07.0599
Section
Soft matter