Slotted Core Circular PCF in Chemical Sensing Applications

  • M. H. Kabir Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University
  • M. B. Alam Miah Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University
  • S. Asaduzzaman Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Department of Software Engineering, Daffodil International University, Dhaka, Bangladesh
  • K. Ahmed Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University
Keywords: slotted core, finite-element method, photonic crystal fiber, photonic bandgap fiber

Abstract

A circular photonic crystal fiber including slotted core (SC-PCF) is proposed for chemical sensing application. The full vectorial finite-element method (FEM) has been applied for a numerical investigation by altering geometrical metrics in the interval of wavelengths from 0.7 to 1.5 мm. An optimized structure is selected by investigating the proposed PCF. The main focus of this research is to find out the hazardous and toxic chemicals. The proposed structure shows a relative sensitivity of 47.08% and a confinement loss of 3.11 × 10−5 dB/m at the same time.

References

J.C. Knight. Photonic crystal fibers. Nature 424, 847 (2003).

https://doi.org/10.1038/nature01940

J.C. Knight, J. Broeng, T.A. Birks, P.S.J. Russell. Photonic band gap guidance in optical fiber. Science 282, 1476 (1998).

https://doi.org/10.1126/science.282.5393.1476

J.M. Fini. Microstructure fibers for optical sensing in gasses and liquids. Meas. Sci. Technol. 15, 1120 (2004).

https://doi.org/10.1088/0957-0233/15/6/011

J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547 (1996).

https://doi.org/10.1364/OL.21.001547

T.A. Birks, J.C. Knight, P.S.J. Russell. Endlessly singlemode photonic crystal fiber. Opt. Lett. 22, 961 (1997).

https://doi.org/10.1364/OL.22.000961

K. Ahmed, M. Morshed. Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sensing and Bio-Sensing Research. 7, 1 (2016).

https://doi.org/10.1016/j.sbsr.2015.10.005

K. Ahmed, S. Asaduzzaman, M.F.H. Arif. Numerical analysis of O-OPCF structure for sensing applications with high relative sensitivity. In 2nd International Conference on Electrical Information and Commmunication Technology (EICT), Bangladesh, 2015.

S. Asaduzzaman, K. Ahmed, M.F.H. Arif, M. Morshed. Application of microarray-core based modified photonic crystal fiber in chemical sensing. In 1st International Conference on Electrical and Electronics Engineering, Bangladesh, 2015.

https://doi.org/10.1109/CEEE.2015.7428286

M. Arjmand, R. Talebzadeh. Optical filter based on photonic crystal resonant cavities. Optoelectronics and Advanced Materials-Rapid Communications 9 (1-2), 32 (2015).

K. Fasihi. High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J. of Lightwave Technology 32 (18), 3126 (2014).

https://doi.org/10.1109/JLT.2014.2334613

M. Morshed, M.F.H. Arif, S. Asaduzzaman, K. Ahmed. Design and characterization of photonic crystal fiber for sensing applications. Eur. Sci. J. 11, 228 (2015).

M. Morshed, S. Asaduzzaman, M.F.H. Arif, K. Ahmed. Proposal of simple gas sensor based on micro structure optical fiber. In 2nd International Conference on Electrical Engineering and Information & Communication Technology, Bangladesh, 2015.

https://doi.org/10.1109/ICEEICT.2015.7307400

M. Morshed, M.I. Hassan, T.K. Roy, M.S. Uddin, S.M.A. Razzak. Microstructure core photonic crystal fiber for gas sensing applications. Appl. Optics. 54, 8637 (2015).

https://doi.org/10.1364/AO.54.008637

M. Morshed, M. I. Hasan, S.M.A. Razzak. Enhancement of the sensitivity of gas sensor based on microstructure optical fiber. Photonic Sensors 5 (4), 312 (2015).

https://doi.org/10.1007/s13320-015-0247-y

J.M. Brosi, C. Koos, L.C. Andreani, et al. High-speed lowvoltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Optics Express 16 (6), 4177 (2008).

https://doi.org/10.1364/OE.16.004177

J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21 (19), 1547 (1996).

https://doi.org/10.1364/OL.21.001547

H. Ademgil. Highly sensitive octagonal photonic crystal fiber based sensor. Optik-Intern. J. for Light and Electron Optics 125, 6274 (2014).

https://doi.org/10.1016/j.ijleo.2014.08.018

S.A. Razzak, M.A.G. Khan, F. Begum, S. Kaijage. Guiding properties of a decagonal photonic crystal fiber. J. of Microwaves, Optoelectr., and Electromagn. Appl. 6 (1), 44 (2007).

Y. Hou, F. Fan, Z.-W. Jiang, X.-H. Wang, S.-J. Chang. Highly birefringent polymer terahertz fiber with honeycomb cladding. Optik-Intern. J. for Light and Electron Optics 124 (17), 3095 (2013).

https://doi.org/10.1016/j.ijleo.2012.09.040

S. Asaduzzaman, M.F.H. Arif, K. Ahmed, P. Dhar. Highly sensitive simple structure circular photonic crystal fiberbased chemical sensor. In: IEEE Intern. WIE Conference on Electrical and Computer Engineering (WIECON-ECE) 2015, pp. 151–154.

https://doi.org/10.1109/WIECON-ECE.2015.7443884

M. Morshed, M.F.H. Arif, S. Asaduzzaman, K. Ahmed. Design and characterization of photonic crystal fiber for sensing applications. Eur. Sci. J. 11 (12), 228 (2015).

M. Morshed, M.I. Hasan, S.A. Razzak. Enhancement of the sensitivity of gas sensor based on microstructured optical fiber. Photonic Sensors 5, 312 (2015).

https://doi.org/10.1007/s13320-015-0247-y

F. Begum, Y. Namihira, S.A. Razzak, S. Kaijage, N.H. Hai, T. Kinjo, K. Miyagi, N. Zou. Design and analysis of novel highly nonlinear photonic crystal fibers with ultraflattened chromatic dispersion. Opt. Commun. 282, 1416 (2009).

https://doi.org/10.1016/j.optcom.2008.12.005

M.S. Habib, M.S. Habib, S.A. Razzak, M.A. Hossain. Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fiber Technol. 19, 461 (2013).

https://doi.org/10.1016/j.yofte.2013.05.014

M.S. Habib, M.S. Habib, M.I. Hasan, S.A. Razzak. A single mode ultra flat high negative residual dispersion compensating photonic crystal fiber. Opt. Fiber Technol. 20, 328 (2014).

https://doi.org/10.1016/j.yofte.2014.03.005

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, S. Leon-Saval. Foundations f Photonic Crystal Fibers (World Scientific, 2005).

https://doi.org/10.1142/p367

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, T. Monro. Bismuth glass holey fibers with high nonlinearity. Opt. Express 12 (21), 5082 (2004).

https://doi.org/10.1364/OPEX.12.005082

C. Lecaplain, B. Orta¸c, G. Machinet, J. Boullet, M. Baumgartl, T. Schreiber, E. Cormier, A. Hideur. High-energy femtosecond photonic crystal fiber laser. Opt. Lett. 35 (19), 3156 (2010).

https://doi.org/10.1364/OL.35.003156

R. Holzwarth, T. Udem, T.W. H¨ansch, J.C. Knight, W.J. Wadsworth, P.S.J. Russell. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85 (11), 2264 (2000).

https://doi.org/10.1103/PhysRevLett.85.2264

J.M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78 (4), 1135 (2006).

https://doi.org/10.1103/RevModPhys.78.1135

J. Park, S. Lee, S. Kim, K. Oh. Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Optics Express 19, 1921 (2011).

https://doi.org/10.1364/OE.19.001921

J. M. Fini. Microstructure fibres for optical sensing in gases and liquids. Meas. Sci. Technol. 15 (6), 1120 (2004).

https://doi.org/10.1088/0957-0233/15/6/011

H. Ademgil. Highly sensitive octagonal photonic crystal fiber based sensor. Optik-Intern. J. for Light and Electron Optics 125, 6274 (2014).

https://doi.org/10.1016/j.ijleo.2014.08.018

Published
2018-12-13
How to Cite
Kabir, M., Alam Miah, M., Asaduzzaman, S., & Ahmed, K. (2018). Slotted Core Circular PCF in Chemical Sensing Applications. Ukrainian Journal of Physics, 62(7), 589. https://doi.org/10.15407/ujpe62.07.0589
Section
Optics, lasers, and quantum electronics