Features of Near-Surface Layer at Monomolecular Isotropic Adsorption: Nonequilibrium Molecular Dynamics Simulation

  • E. G. Manoilov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • S. A. Kravchenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • B. A. Snopok V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
Keywords: molecular dynamics, isotropic adsorption, adsorption kinetics, near-surface concentration

Abstract

Processes running in the gas phase near a solid surface have been analyzed in the framework of nonequilibrium dynamics and by simulating the irreversible monomolecular isotropic adsorption. Their influence on the adsorption kinetics is analyzed. A complicated spatial organization of particles in the near-surface layer, where the particle concentration and energy vary in time, is revealed,. It is found that the local particle concentration can either decrease (down to about 60% of the initial value) or increase with the distance from the surface, depending on the system concerned. The obtained results can be used to analyze and to predict processes running in the near-surface layer of elements for the sensor and electronic engineering, gas dynamics, and other areas, where the ballistic character and the kinematics of motion dominate and govern the functional properties of the system.

References

L. Ben, M. Charles. Molecular Dynamics with Deterministic and Stochastic Numerical Methods (Springer, 2015).

I. Tinoco, K. Sauer, J.C. Wang, J.D. Puglisi. Physical Chemistry: Principles and Applications in Biological Sciences (Prentice Hall, 2002).

G.D. Billing, K.V. Mikkelsen. Introduction to Molecular Dynamics and Chemical Kinetics (Wiley-Interscience, 1996).

V.A. Shchukin, D. Bimberg. Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125 (1999).

https://doi.org/10.1103/RevModPhys.71.1125

E.B. Kaganovych, S.O. Kravchenko, I.M. Krishchenko, E.G. Manoilov. Production of an ensemble of Au (Ag) nanoparticles by pulsed laser deposition. Fiz. Khim. Tverd. Tila 14, 649 (2013) (in Ukrainian).

J.P. Freidberg. Plasma Physics and Fusion Energy (Cambridge Univ. Press, 2007) [ISBN: 978-0-521-85107-7].

https://doi.org/10.1017/CBO9780511755705

H.J. Reich. Principles of Electron Tubes (Literary Licensing LLC, 2013) [ISBN: 1258664062].

A.W. Chao, K.H. Mess, M. Tigner. Handbook of Accelerator Physics and Engineering (World Scientific, 2013) [ISBN: 978-981-4415-84-2].

https://doi.org/10.1142/8543

N. Orgovan, D. Patko, C. Hos, S. Kurunczi, B. Szab’o, J.J. Ramsden, R. Horvath. Sample handling in surface sensitive chemical and biological sensing: A practical review of basic fluidics and analyte transport. Adv. Colloid Interf. Sci. 211, 1 (2014).

https://doi.org/10.1016/j.cis.2014.03.011

V.P. Budaev, L.N. Khimchenko. Fractal structure of deposited nano-films in fusion devices. Vopr. At. Nauki Tekhn. Ser. Termoyadern. Sintez No. 3, 34 (2008) (in Russian).

M. Malmsten. Biopolymers at Interfaces (CRC Press Science, 2003) [ISBN: 978-0-8247-0863-4].

https://doi.org/10.1201/9780824747343

R.D. Zucker, O. Biblarz. Fundamentals of Gas Dynamics (Wiley, 2002) [ISBN: 978-0-471-05967-7].

O.V. Bychuk, B. O'Shaughnessy. Anomalous diffusion at liquid surfaces. Phys. Rev. Lett. 74, 1795 (1995).

https://doi.org/10.1103/PhysRevLett.74.1795

O.V. Bychuk, B. O'Shaughnessy. Adsorption-desorption kinetics at liquid surfaces. J. Colloid Interf. Sci. 167, 193 (1994).

https://doi.org/10.1006/jcis.1994.1348

I.A. Myasnikov, V.Ya. Sukharev, L.Yu. Kuprianov, S.A. Zav'yalov. Semiconductor Sensors in Physicochemical Investigations (Nauka, 1991) (in Russian).

J.W. Evans. Random and cooperative sequential adsorption. Rev. Mod. Phys. 65, 1281 (1993).

https://doi.org/10.1103/RevModPhys.65.1281

E.G. Manoilov, S.A. Kravchenko, B.A. Snopok. Methodology of the object-oriented modeling of adsorption processes: The features in the dynamics of formation and spatial self-organization of surface structures. Optoelektron. Poluprovodn. Tekhn. 51, 135 (2016) (in Russian).

E.G. Manoilov, S.A. Kravchenko, B.A. Snopok. Peciliarities of cooperative adsorption described by the sticking coefficient depending on the number of neighbors. Teor. Eksp. Khim. 53, 17 (2017) (in Russian).

B.A. Snopok, I.V. Kruglenko. Nonexponential relaxations in sensor arrays: Forecasting strategy for electronic nose performance. Sensor. Actuat. B 106, 101 (2005).

https://doi.org/10.1016/j.snb.2004.05.064

P. Boltovets, S. Shinkaruk, L. Vellutini, B. Snopok. Selftuning interfacial architecture for Estradiol detection by surface plasmon resonance biosensor. Biosens. Bioelectron. 90, 91 (2017).

https://doi.org/10.1016/j.bios.2016.11.017

B.A. Snopok. Nonexponential kinetics of surface chemical reactions. Theor. Exper. Chem. 50, 67 (2014).

https://doi.org/10.1007/s11237-014-9351-0

I.V. Savelyev. Physics. A General Course. Vol. 1. Mechanics, Molecular Physics (Mir, Moscow, 1979).

Published
2018-12-13
How to Cite
Manoilov, E., Kravchenko, S., & Snopok, B. (2018). Features of Near-Surface Layer at Monomolecular Isotropic Adsorption: Nonequilibrium Molecular Dynamics Simulation. Ukrainian Journal of Physics, 62(8), 717. https://doi.org/10.15407/ujpe62.08.0717
Section
General problems of theoretical physics

Most read articles by the same author(s)