Elastic Properties of Substitutional Solid Solutions InxTl1−xI and Sound Wave Velocities in Them

  • A. V. Franiv Ivan Franko National University of Lviv
  • A. I. Kashuba Ivan Franko National University of Lviv
  • O. V. Bovgyra Ivan Franko National University of Lviv
  • O. V. Futey Ivan Franko National University of Lviv
Keywords: substitutional solid solutions, elastic constants, piezoelectric transducer, ultrasonic waves

Abstract

Elastic properties of substitutional solid solutions InxTl1−xI have been studied. The corresponding Young modulus, shear modulus, and compression modulus are calculated theoretically. The dependence of the elastic properties of the InxTl1−xI solid solution on the content x within the interval 0.375 ≤ x ≤ 1 is analyzed. The velocity of sound propagation in examined specimens is studied experimentally. The obtained data are used to calculate the elastic coefficient C22 for InxTl1−xI. The theoretical results are found to be in good agreement with experimental data.

References

A. Franiv, O. Bovgyra, O. Savchyn. Electron and phonon spectra of In Tl1− I substitutional solid solutions. Ukr. J. Phys. 51, 269 (2006).

Ya.O. Dovhyi, S.V. Ternavska, A.V. Franiv, O.V. Bovgyra, O.V. Savchyn. Raman spectra of In xTl1− I substitutional solid solutions. Funct. Mater. 12, 503 (2005).

Xu Zhao-Peng, Wang Yong-Zhen, Zhang Wei, Wang Qian, Wu Guo-Qing. First-principle study on the effects of Tl doping on the band gap and the band-edge of optical absorption of InI. Acta Phys. Sin. 63, 147102 (2014).

A.I. Kashuba, S.V. Apunevych. Phonon spectrum of crystals of substitutional solid solutions In Tl1− I. Zh. Nano Elektron. Fiz. 8, 01010 (2016) (in Ukrainian).

A. Kashuba. Concentration dependence of the energy gap width in substitutional solid solutions In Tl1− I. Visn L'viv. Univ. Ser. Fiz. No. 50, 3 (2015) (in Ukrainian).

A.I. Kashuba, O.V. Bovgyra, A.V. Franiv, S.V. Apunevych. Argand diagrams and oscillator forces of the In0.5Tl0.5I crystal. Fiz. Khim. Tverd. Tila 17, 350 (2016) (in Ukrainian).

M.I. Kolinko, O.V. Bovgyra. Band energy diagram of indium bromide. Ukr. J. Phys. 46, 707 (2001).

A. Bellouche, A. Gueddim, S. Zerroug, N. Bouarissa. Elastic properties and optical spectra of ZnS1− O dilute semiconductor alloys. Optik 127, 11374 (2016).

https://doi.org/10.1016/j.ijleo.2016.09.034

Y. Abed, F. Montaghni. Simulation investigations of structural, electronic, optical and elastic properties of the Cu Ti1− O2. Nanosci. Nanotechnol. 6, No. 4, 62 (2016).

R.M. Martin. Elastic properties of ZnS structure semiconductors. Phys. Rev. B 1, 4005 (1970).

https://doi.org/10.1103/PhysRevB.1.4005

F. Kalarasse, B. Bennecer. Structural and elastic properties of the filled tetrahedral semiconductors LiZnX (X = N, P, and As). J. Phys. Chem. Solids 67, 846 (2006).

https://doi.org/10.1016/j.jpcs.2005.12.005

P. Hohenberg. Inhomogeneous electron gas. Phys. Rev. 136, 864 (1964).

https://doi.org/10.1103/PhysRev.136.B864

P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

https://doi.org/10.1103/PhysRevLett.77.3865

I.V. Semkiv, B.A. Lukiyanets, H.A. Ilchuk, R.Yu. Petrus, A.I. Kashuba, M.V. Chekaylo. Energy structure of ′ -phase of Ag8SnSe6 crystal. J. Nano-Electron. Phys. 8, 01011 (2016).

O.G. Vlokh, O.M. Mokryi, A.V. Kityk. Device for measuring ultrasound velocity in solid and liquid media. Author sertificate No. 1608432 USSR (1990).

E.P. Papadakis. Ultrasonic phase velocity by the pulseecho-overlap method incorporating diffraction phase corrections. J. Acoust. Soc. Am. 42, 1045 (1967).

https://doi.org/10.1121/1.1910688

Handbook Series on Semiconductor Parameters. Edited by M. Levinshtein, S. Rumyantsev, M. Shur (World Scientific, 1999), Vol. 2.

N. Bouarissa, S. Saib. Elastic modulus, optical phonon modes and polaron properties in Al1− B N alloys. Curr. Appl. Phys. 13, 493 (2013).

https://doi.org/10.1016/j.cap.2012.09.021

S.I. Mudryi. Acoustic Methods of Substance Analysis (Lviv Nat. Univ. Publ. Center, 2008) (in Ukrainian).

Y. Honma, M. Yamada, K. Yamamoto. Elastic constants of GaS and GaSe layered crystals determined by Brillouin scattering. J. Phys. Soc. Jpn. 52, 2777 (1983).

https://doi.org/10.1143/JPSJ.52.2777

P. Ravindran, L. Fast, P. A. Korzhavyi et al. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 84, 4891 (1998).

https://doi.org/10.1063/1.368733

Published
2018-12-13
How to Cite
Franiv, A., Kashuba, A., Bovgyra, O., & Futey, O. (2018). Elastic Properties of Substitutional Solid Solutions InxTl1−xI and Sound Wave Velocities in Them. Ukrainian Journal of Physics, 62(8), 679. https://doi.org/10.15407/ujpe62.08.0679
Section
Solid matter