Calculation of the Positive Parity Yrast Bands of 190−198Hg Nuclei

  • K. A. Hussain Department of Physics, College of Science, University of Babylon
  • M. K. Mohsin Department of Physics, College of Science, University of Babylon
  • F. I. Sharrad Department of Physics, College of Science, University of Kerbala
Keywords: IBM-1, B(E2) values, energy levels, potential energy

Abstract

The Interacting Boson Model (IBM-1) has been used to calculate the low-lying positive parity yrast bands in 190−198Hg nuclei. The systematic yrast level and electric reduced transition probabilities B(E2)↓ of those nuclei are calculated and compared with the available experimental data. The ratio of the excitation energies of first 4+ and first 2+ excited states, R4/2, is also studied for the O(6) symmetry for these nuclei. Furthermore, as a measure to quantify the evolution, we have studied systematically the yrast level R = EL+1/E2+1 of some of the low-lying quadrupole collective states in comparison to the available experimental data. Moreover, we have studied the systematic B(E2) values, and the moment of inertia as a function of the squared rotational energy for even proton Z = 80 and 110 < N < 118 nuclei indicates the disappearance of back-bending properties. The results of this calculation are in good agreement with the corresponding available experimental data. The analytic IBM-1 calculation of the yrast level and B(E2) values of even-even Hg nuclei is performed in the framework of O(6) symmetry. The contour plot of the potential energy surfaces shows that the nuclei are deformed and have y-unstable-like characters.

References

R.M. Lieder, H. Beuscher, W.F. Davidson, A. Neskakis, C. Mayer-B¨oricke. Excitation of high-spin states in 190,191,192,193,194Hg through (,) reactions. Nucle. Phys. A 248, 317 (1975).

https://doi.org/10.1016/0375-9474(75)90168-2

A. Sethi, N.M. Hintz, D.N. Mihailidis, A.M. Mack, M. Gazzaly, K. W. Jones, G. Pauletta, L. Santi, D. Goutte. Inelastic proton scattering from Pt isotopes and the interacting boson model. Phys. Rev. C 44, 700 (1991).

https://doi.org/10.1103/PhysRevC.44.700

A. Arima, F. Iachello. Interacting boson model of collective nuclear states IV. The (6) limit. Ann. Phys. NY 123, 468 (1979).

https://doi.org/10.1016/0003-4916(79)90347-6

H.H. Kassim, F.I. Sharrad. Negative parity low-spin states of even-odd 187−197Pt isotopes. Nucl. Phys. A 933, 1 (2015).

https://doi.org/10.1016/j.nuclphysa.2014.08.097

T. Otsuka, A. Arima, F. Iachello. Nuclear shell model and interacting bosons. Nucl. Phys. A 309, 1 (1978).

https://doi.org/10.1016/0375-9474(78)90532-8

F. Iachello, A. Arima. Boson symmetries in vibrational nuclei. Phys. Lett. B 53, 309 (1974).

https://doi.org/10.1016/0370-2693(74)90389-X

A. Arima, F. Iachello. Collective nuclear states as representations of a SU(6) group. Phys. Rev. Lett. 35, 1069 (1975).

https://doi.org/10.1103/PhysRevLett.35.1069

R. Kumar, S. Sharma, J.B. Gupta. Character of quasibands in 150 sm using IBM. Arm. J. Phys. 3, 150 (2010).

D. Vretenar, G. Bonsignori, M. Savoia. One and two broken pairs in the interacting boson model: High-spin states in 190,192,194Hg. Phys. Rev. C 47, 2019 (1993).

https://doi.org/10.1103/PhysRevC.47.2019

S. Yoshida, N. Takigawa. Shape dependence of pairing gap energies and the structure of Hg and Pb isotopes. Phys. Rev. C 55, 1255 (1997).

https://doi.org/10.1103/PhysRevC.55.1255

L. Weissman, R.H. Mayer, G. Kumbartzki, N. BenczerKoller, C. Broude, J.A. Cizewski, M. Hass, J. Holden, R.V.F. Janssens, T. Lauritsen, I.Y. Lee, A.O. Macchiavelli, D.P. McNabb, M. Satteson. Single particle signatures in high-spin, quasicontinuum states in Hg-193, Hg-194 from -factor measurements. Phys. Lett. B 446, 22 (1999).

https://doi.org/10.1016/S0370-2693(98)01514-7

K. Nomura, R. Rodr’ıguez-Guzm’an, L.M. Robledo. Shape evolution and the role of intruder configurations in Hg isotopes within the interacting boson model based on a Gogny energy density functional. Phys. Rev. C 87, 064313 (2013).

https://doi.org/10.1103/PhysRevC.87.064313

C. Bernards et al. Investigation of 0+ states in 198Hg after two-neutron pickup. Phys. Rev. C 87, 024318 (2013).

https://doi.org/10.1103/PhysRevC.87.024318

J.E. Garc´ıa-Ramos, K. Heyde. Disentangling the nuclear shape coexistence in even-even Hg isotopes using the interacting boson model. arXiv:1410.2869 (2014).

N. Bree et al. Shape coexistence in the neutron-deficient even-even 182−188Hg isotopes studied via Coulomb excitation. Phys. Rev. Lett. 112, 162701 (2014).

https://doi.org/10.1103/PhysRevLett.112.162701

J.M. Boillos, P. Sarriguren. Effects of deformation on the -decay patterns of light even-even and odd-mass Hg and Pt isotopes. Phys. Rev. C 91, 034311 (2015).

https://doi.org/10.1103/PhysRevC.91.034311

H.H. Kassim, F.I. Sharrad. Energy levels and electromagnetic transition of 190˘196Pt nuclei. Int. J. Mod. Phys. E 23, 1450070 (2014).

https://doi.org/10.1142/S0218301314500700

H.H. Kassim, F.I. Sharrad. High-spin structure in 192−196Pt isotopes. Research & Reviews: J. of Phys. 3, 11 (2014).

H.H. Kassim, F.I. Sharrad. O(6) symmetry of even 186−198Pt isotopes under the framework of interacting boson model (IBM-1). Int. J. of Sci. and Research (IJSR) 3, 2189 (2014).

F.I. Sharrad, H.Y. Abdullah, N. AL-Dahan, N.M. Umran, A.A. Okhunov, H. Abu-Kassim. Low-lying states of 184W and 184Os nuclei. Chinese Phys. C 37, 034101 (2013).

https://doi.org/10.1088/1674-1137/37/3/034101

F.I. Sharrad, H.Y. Abdullah, N. AL-Dahan, A.A. Mohammed-Ali, A.A. Okhunov, H.A. Kassim. Shape transition and collective excitations in neutron-rich 170−178Yb nuclei. Rom. J. Phys. 57, 1346 (2012).

H.H. Khudher, A.K. Hasan, F.I. Sharrad. Calculation of energy levels, transition probabilities, and potential energy surfaces for 120−126Xe even-even isotopes. Ukr. J. Phys. 62, 152 (2017).

https://doi.org/10.15407/ujpe62.02.0152

F. Iachello, A. Arima. The Interacting Boson Model (Cambridge Univ. Press, 1987) [ISBN: 978-0521302821].

https://doi.org/10.1017/CBO9780511895517

R.F. Casten, D.D Warner. The interacting boson approximation. Rev. Mod. Phys. 60, 389 (1988).

https://doi.org/10.1103/RevModPhys.60.389

F. Iachello, P. Van Isacker. The interacting Boson Mode (Cambridge Univ. Press, 1991) [ISBN: 978-0521380928].

https://doi.org/10.1017/CBO9780511549724

http://www.nndc.bnl.gov/chart/getENSDFDatasets.jsp.

B.J. Singh. Nuclear data sheets for = 190. Nucl. Data Sheets 99, 275 (2003).

https://doi.org/10.1006/ndsh.2003.0009

C.M. Baglin. Nuclear data sheets for = 192. Nucl. Data Sheets 84, 717 (1998).

https://doi.org/10.1006/ndsh.1998.0017

B.J. Singh. Nuclear data sheets for = 194. Nucl. Data Sheets 107, 1531 (2006).

https://doi.org/10.1016/j.nds.2006.05.004

H. Xiaolong. Nuclear data sheets for = 196. Nucl. Data Sheets 108, 1093 (2007).

https://doi.org/10.1016/j.nds.2007.05.001

H. Xiaolong. Nuclear data sheets for = 198. Nucl. Data Sheets 110, 2533 (2009).

https://doi.org/10.1016/j.nds.2009.09.002

Published
2018-12-13
How to Cite
Hussain, K., Mohsin, M., & Sharrad, F. (2018). Calculation of the Positive Parity Yrast Bands of 190−198Hg Nuclei. Ukrainian Journal of Physics, 62(8), 653. https://doi.org/10.15407/ujpe62.08.0653
Section
Nuclei and nuclear reactions