Tin-Induced Crystallization of Amorphous Silicon Under Pulsed Laser Irradiation

  • V. B. Neimash Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. Melnyk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • L. L. Fedorenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • P. Ye. Shepelyavyi V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Strilchuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • A. S. Nikolenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • M. V. Isaiev Taras Shevchenko National University of Kyiv, Faculty of Physics
  • A. G. Kuzmych Taras Shevchenko National University of Kyiv, Faculty of Physics
Keywords: solar cells, thin films, nanocrystals, silicon, tin, metal-induced crystallization

Abstract

Tin-induced crystallization of amorphous silicon in thin-film Si–Sn–Si structures under the influence of laser irradiation of various types has been studied, by using Raman scattering. The size and concentration dependences of Si nanocrystals on the power of 10-ns and 150-мs laser pulses with a wavelength of 535 or 1070 nm are experimentally measured and analyzed. A possibility of effective tin-induced transformation of silicon in a-Si layers 200 nm in thickness from the amorphous to crystalline phase within 10 ns time interval under the action of laser light pulses is demonstrated. The theoretical calculation of the spatial temperature distribution and its time evolution in the area of the laser beam action is used to interpret the experimental results.

References

M.C. Beard, J.M. Luther, A.J. Nozik. The promise and challenge of nanostructured solar cells. Nature Nanotechn. 9, 951 (2014).

https://doi.org/10.1038/nnano.2014.292

Z.I. Alferov, V.M. Andreev, V.D. Rumyantsev. Solar photovoltaics: Trends and prospects. Semiconductors 38, 899 (2004).

https://doi.org/10.1134/1.1787110

B. Yan, G. Yue, X. Xu, J. Yang, S. Guha. High efficiency amorphous and nanocrystalline silicon solar cells. Phys. Status Solidi B 207, 671 (2010).

https://doi.org/10.1002/pssa.200982886

N.S. Lewis. Toward cost-effective solar energy use. Science 315, 798 (2007).

https://doi.org/10.1126/science.1137014

R. Søndergaard, M. H¨osel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs. Roll-to-roll fabrication of polymer solar cells. Mater. Today 15, 36 (2012).

https://doi.org/10.1016/S1369-7021(12)70019-6

M. Birkholz, B. Selle, E. Conrad, K. Lips, W. Fuhs. Evolution of structure in thin microcrystalline silicon films grown by electron-cyclotron resonance chemical vapor deposition. J. Appl. Phys. 88, 4376 (2000).

https://doi.org/10.1063/1.1289783

B. Rech, T. Roschek, J. M¨uller, S. Wieder, H. Wagner. Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF (13.56 MHz) plasma excitation frequencies. Sol. Energy Mater. Sol. Cells 66, 267 (2001).

https://doi.org/10.1016/S0927-0248(00)00183-5

M.K. van Veen, C.H.M. van der Werf, R.E.I. Schropp. Tandem solar cells deposited using hot-wire chemical vapor deposition. J. Non. Cryst. Solids 338–340, 655 (2004).

https://doi.org/10.1016/j.jnoncrysol.2004.03.071

Y. Mai, S. Klein, R. Carius, H. Stiebig, L. Houben, X. Geng, F. Finger. Improvement of open circuit voltage in micro-crystalline silicon solar cells using hot wire buffer layers. J. Non. Cryst. Solids 352, 1859 (2006).

https://doi.org/10.1016/j.jnoncrysol.2005.11.116

H. Li, R.H. Franken, R.L. Stolk, C.H.M. van der Werf, J.K. Rath, R.E.I. Schropp. Controlling the quality of nanocrystalline silicon made by hot-wire chemical vapor deposition by using a reverse H2 profiling technique. J. Non. Cryst. Solids 354, 2087 (2008).

https://doi.org/10.1016/j.jnoncrysol.2007.10.046

R. Amrani, F. Pichot, L. Chahed, Y. Cuminal. Amorphous-nanocrystalline transition in silicon thin films obtained by argon diluted silane PECVD. Cryst. Struct. Theory Appl. 1, 57 (2012).

https://doi.org/10.4236/csta.2012.13011

G. Fugallo, A. Mattoni. Thermally induced recrystallization of textured hydrogenated nanocrystalline silicon. Phys. Rev. B 89, 045301 (2014).

https://doi.org/10.1103/PhysRevB.89.045301

O. Nast, A.J. Hartmann. Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon. J. Appl. Phys. 88, 716 (2000).

https://doi.org/10.1063/1.373727

M. Jeon, C. Jeong, K. Kamisako. Tin induced crystallisation of hydrogenated amorphous silicon thin films. Mater. Sci. Technol. 26, 875 (2010).

https://doi.org/10.1179/026708309X12454008169500

M.A. Mohiddon, M.G. Krishna. Growth and optical properties of Sn–Si nanocomposite thin films. J. Mater. Sci. 47, 6972 (2012).

https://doi.org/10.1007/s10853-012-6647-0

D. Van Gestel, I. Gordon, J. Poortmans. Aluminuminduced crystallization for thin-film polycrystalline silicon solar cells: Achievements and perspective. Sol. Energy Mater. Sol. Cells 119, 261 (2013).

https://doi.org/10.1016/j.solmat.2013.08.014

A. Mohiddon, G. Krishna. Metal induced crystallization. in Crystallization – Science and Technology, edited by A. Marcello (InTech, 2012), p. 461 [ISBN: 978-953-51-0757-6].

https://doi.org/10.5772/50064

V.V. Voitovych, V.B. Neimash, N.N. Krasko, A.G. Kolosiuk, V.Y. Povarchuk, R.M. Rudenko, V.A. Makara, R.V. Petrunya, V.O. Juhimchuk, V.V. Strelchuk. The effect of Sn impurity on the optical and structural properties of thin silicon films. Semiconductors 45, 1281 (2011).

https://doi.org/10.1134/S1063782611100253

V.B. Neimash, V.M. Poroshin, A.M. Kabaldin, V.O. Yukhymchuk, P.E. Shepelyavyi, V.A. Makara, S.Y. Larkin. Paper abstract microstructure of thin Si–Sn composite films. Ukr. J. Phys. 58, 865 (2013).

https://doi.org/10.15407/ujpe58.09.0865

V. Neimash, V. Poroshin, P. Shepeliavyi, V. Yukhymchuk, V. Melnyk, A. Kuzmich, V. Makara, A.O. Goushcha. Tin induced a-Si crystallization in thin films of Si–Sn alloys. J. Appl. Phys. 114, 213104 (2013).

https://doi.org/10.1063/1.4837661

V.B. Neimash, A.O. Goushcha, P.E. Shepeliavyi, V.O. Yukhymchuk, V.A. Dan'ko, V.V. Melnyk, A.G. Kuzmich.Mechanism of tin-induced crystallization in amorphous silicon. Ukr. J. Phys. 59, 1168 (2014).

https://doi.org/10.15407/ujpe59.12.1168

V.B. Neimash, A.O. Goushcha, P.Y. Shepeliavyi, V.O. Yukhymchuk, V.A. Danko, V.V. Melnyk, A.G. Kuzmich. Selfsustained cyclic tin induced crystallization of amorphous silicon. J. Mat. Res. 30, 3116 (2015).

https://doi.org/10.1557/jmr.2015.251

V. Neimash, P. Shepelyavyi, G. Dovbeshko, A.O. Goushcha, M. Isaiev, V. Melnyk, O. Didukh, A. Kuzmich. Nanocrystals growth control during laser annealing of Sn: (-Si) composites. J. Nanomater. 2016, 1 (2016).

https://doi.org/10.1155/2016/7920238

H. Richter, Z.P. Wang, L. Ley. The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625 (1981).

https://doi.org/10.1016/0038-1098(81)90337-9

I.H. Campbell, P.M. Fauchet. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739 (1986).

https://doi.org/10.1016/0038-1098(86)90513-2

A. Hiraki. Low temperature reactions at Si/metal interfaces: What is going on at the interfaces? Surf. Sci. Reports 3 (7), 357 (1983).

https://doi.org/10.1016/0167-5729(84)90003-7

S.A. Akhmanov, V.I. Emel'yanov, N.I. Koroteev, V.N. Seminogov. Interaction of powerful laser radiation with the surfaces of semiconductors and metals: Nonlinear optical effects and nonlinear optical diagnostics. Usp. Fiz. Nauk 147, 675 (1985) (in Russian).

https://doi.org/10.3367/UFNr.0147.198512b.0675

R. Burbelo, D. Andrusenko, M. Isaiev, A. Kuzmich. Laser photoacoustic diagnostics of advanced materials with different structure and dimensions. Arch. Metall. Mater. 56, 1157 (2011).

https://doi.org/10.2478/v10172-011-0129-2

R. Burbelo, M. Isaiev, A. Kuzmich. Evolution of temperature distribution in implanted Si-based structures: Pulse mode of laser irradiation. Ukr. J. Phys. 55, 317 (2010).

M. Isaiev, V. Kuryliuk, A. Kuzmich, R. Burbelo. Photothermal transformation in heterogeneous semiconductors structures under its pulse laser irradiation: Role of electron-hole diffusion. Arch. Metall. Mater. 58, 15 (2013).

https://doi.org/10.2478/amm-2013-0173

G. Grimvall. Thermophysical Properties of Materials (The Royal Institute of Technology, 1999) [ISBN: 9780080542867].

G.K.M. Thutupalli, S.G. Tomlin. The optical properties of amorphous and crystalline silicon. J. Phys. C 10, 467 (1977).

https://doi.org/10.1088/0022-3719/10/3/017

S. Adachi, H. Mori. Optical properties of fully amorphous silicon. Phys. Rev. B 62, 10158 (2000).

https://doi.org/10.1103/PhysRevB.62.10158

D.R. Queen. The Specific Heat of Pure and Hydrogenated Amorphous Silicon (Univ. of California, 2011).

B.L. Zink, R. Pietri, F. Hellman. Thermal conductivity and specific heat of thin-film amorphous silicon. Phys. Rev. Lett. 96, 55902 (2006).

https://doi.org/10.1103/PhysRevLett.96.055902

S.P. Rodichkina, L.A. Osminkina, M. Isaiev, A.V. Pavlikov, A.V. Zoteev, V.A. Georgobiani, K.A Gonchar, A.N. Vasiliev, V.Y. Timoshenko. Raman diagnostics of photoinduced heating of silicon nanowires prepared by metal-assisted chemical etching. Appl. Phys. B 121, 337 (2015).

https://doi.org/10.1007/s00340-015-6233-7

M. Isaiev, O. Didukh, T. Nychyporuk, V. Timoshenko, V. Lysenko. Anisotropic heat conduction in silicon nanowire network revealed by Raman scattering. Appl. Phys. Lett. 110, 011908 (2017).

https://doi.org/10.1063/1.4973737

O. Plaksin, Y. Takeda, H. Amekura, N. Kishimoto, S. Plaksin. Saturation of nonlinear optical absorption of metalnanoparticle composites. J. Appl. Phys. 103, 114302 (2008).

https://doi.org/10.1063/1.2936833

G. Conibeer. Third-generation photovoltaics. Mater. Today 10, 42 (2007).

https://doi.org/10.1016/S1369-7021(07)70278-X

G. Conibeer, I. Perez-Wurfl, X. Hao, D. Di, D. Lin. Si solid-state quantum dot-based materials for tandem solar cells. Nanoscale Res. Lett. 7, 193 (2012).

https://doi.org/10.1186/1556-276X-7-193

V.G. Litovchenko. On some important results in semiconductor surface science obtained in Ukraine during the independence years (1991—2016). Ukr. J. Phys. 62, 80 (2017).

https://doi.org/10.15407/ujpe62.01.0080

V.G. Litovchenko, T.I. Gorbanyuk, V.S. Solntsev, A.A. Evtukh. Mechanism of hydrogen, oxygen and humidity sensing by Cu/Pd-porous silicon-silicon structures. Appl. Surf. Sci. 234, 262 (2004).

https://doi.org/10.1016/j.apsusc.2004.05.146

V.G. Litovchenko, T.I. Gorbanyuk, V.S. Solntsev, A.A. Evtukh. Mechanism of hydrogen-containing and oxygen molecules sensing by Pd- and Cu/Pd-porous Si-Si structures. Appl. Surf. Sci. 234, 262 (2004).

https://doi.org/10.1016/j.apsusc.2004.05.146

V. Lysenko, J. Vitiello, B. Remaki, D. Barbier, V. Skryshevsky. Nanoscale morphology dependent hydrogen coverage of meso-porous silicon. Appl. Surf. Sci. 230, 425 (2004).

https://doi.org/10.1016/j.apsusc.2004.03.005

Published
2018-12-13
How to Cite
Neimash, V., Melnyk, V., Fedorenko, L., Shepelyavyi, P., Strilchuk, V., Nikolenko, A., Isaiev, M., & Kuzmych, A. (2018). Tin-Induced Crystallization of Amorphous Silicon Under Pulsed Laser Irradiation. Ukrainian Journal of Physics, 62(9), 806. https://doi.org/10.15407/ujpe62.09.0806
Section
Solid matter

Most read articles by the same author(s)