Synthesis and Characterization of CdS Nanoparticles Obtained in Star-Like Dextran-Graft-Polyacrylamide Matrices

  • A. Naumenko Faculty of Physics, Taras Shevchenko National University of Kyiv
  • N. Kutsevol Faculty of Chemistry, Taras Shevchenko National University of Kyiv
  • V. Chumachenko Faculty of Chemistry, Taras Shevchenko National University of Kyiv
  • V. Pashchenko Faculty of Physics, Taras Shevchenko National University of Kyiv
  • S. Kutovyy Faculty of Physics, Taras Shevchenko National University of Kyiv
  • M. Rawiso Institut Charles Sadron (CNRS-UdS)
Keywords: nanoparticles, absorption spectra, fluorescence spectra, transmission electron microscopy, polymer matrix


Cadmium sulfide (CdS) nanoparticles (NPs) are synthesized into a branched dextran-graft-polyacrylamide matrix. The obtained stable sol is characterized by spectrophotometry, fluorescence spectroscopy, transmission electron microscopy, and dynamic light scattering. The polymer affects the process of the nanoparticle formation, namely controls their size and morphology, and enhances the sols storage stability preventing the nanoparticles aggregation. It is shown that CdS NPs obtained in a branched polymer matrix are monodisperse 4–6 nm in size and form clusters (50–200 nm in size) localized in a limited macromolecule volume. The CdS nanoparticles reveal the improved blue light emission and may be considered as a promising material for light-emitting devices, especially in the blue region. They may have potential applications as biological labels.


A.D. Yoffe. Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50, 1 (2001).

N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin. Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes. Science 295, 1506 (2002).

G. Schmid (ed.). Nanoparticles. From Theory to Application (Wiley-VCH, 2004).

D.G. Thomas, J.J. Hopfield. Optical properties of bound exciton complexes in cadmium sulfide. Phys. Rev. 128, 2135 (1962).

D. Korbutyak, S. Kalytchuk, S. Budzulyak, A. Kuryk, S. Tokarev, O. Shevchuk, H. Ilchuk, V. Tokarev. Luminescent properties of CdS nanocrystals synthesized in polymeric matrices. J. Phys. Stidies 18, 1801 (2014).

D.V. Korbutyak, S.V. Tokarev, O.M. Shevchuk, H.A. Ilchuk, V.S. Tokarev, S.I. Budzulyak, A.O. Kuryk. Synthesis and photoluminescence spectra of the composite films with cadmium sulfide nanocrystals. J. of Nano- and Electr. Phys. 5, 04066 (2013).

S.V. Tokarev, G.A. Il'chuk, V.V. Kusnezh, O.M. Schevchuk, L.V. Dolyn'ska, V.S. Tokarev. Effect of a polymer matrix on the properties of CdS semiconductor clusters. Reports of the Nat. Acad. of Sci. of Ukraine 12, 58 (2011).

S. Sinha, I. Pan, P. Chanda, S.K. Sen. Nanoparticles fabrication using ambient biological resources. J. Appl. Biosci. 1, 1113 (2009).

M. Borovaya, Ya. Pirko, T. Krupodorova, A. Naumenko, Y. Blume, A. Yemets. Biosynthesis of cadmium sulfide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm. Biotechnology & Biotechnological Equipment 1 (2015).

M. Borovaya et al. Biosynthesis of luminescent CdS quantum dots using plant hairy root culture. Nanoscale Research Letters 9, 686 (2014).

N. Moloto, M.J. Moloto, N.J. Coville, S.S. Ray. The study on the time dependency and the stability of cobalt sulfide nanoparticles under an electron beam. J. of Nanoscience and Nanotechnology 10 (9), 5594 (2010).

X.M. Yang, G.M. Wang, Z.H. Lu. Characterization of CdS nanoparticles formed and aggregated in stearic acid Langmuir–Blodgett films by atomic force microscopy. Supramolecular Sci. 5, 549 (1998).

N.V. Kutsevol, T.N. Bezuglaya, N. Yu. Bezuglyi. Features of the intramolecular structure of branched polymer systems in solution. J. Struct. Chem. 55, 548 (2014).

N. Kutsevol, T. Bezugla, M. Bezuglyi, M. Rawiso. Branched Dextran-graft-Polyacrylamide Copolymers as Perspective Materials for Nanotechnology Macromol. Symp. 317–318 (1), 82 (2012).

N. Kutsevol, J.M. Guenet, N. Melnyk, D. Sarazin, C. Rochas. Solution properties of dextran–polyacrylamide graft copolymers. Polymer 47, 2061 (2006).

M. Bezuglyi, N. Kutsevol, M. Rawiso, T. Bezugla. Watersoluble branched copolymers dextran-polyacrylamide and their anionic derivates as matrices for metal nanoparticles in situ synthesis. Chemik 66, 862 (2012).

V. Chumachenko, N. Kutsevol, M. Rawiso, M. Schmutz, C. Blanck. In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents. Nanoscale Research Lett. 9, 164 (2014).

N.V. Kutsevol, V.A. Chumachenko, M. Rawiso, V.F. Shkodich, O.V. Stoyanov. Star-like dextran-polyacrylamide polymers: Prospects of use in nanotechnologies. J. Struct. Chem. 56, 959 (2015).

H.S. Mansur, A.A.P. Mansur, J.C. Gonzalez. Synthesis and characterization of CdS quantum dots with carboxylicfunctionalized poly (vinyl alcohol) for bioconjugation. Polymer 52, 1045 (2011).

H.S. Mansur, A.A.P. Mansur, J.C. Gonzalez. Biomoleculequantum dot systems for bioconjugation applications. Colloid Surfaces B 84, 360 (2011).

X. Peng, J. Wickham, A.P. Alivisatos. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "Focusing" of size distributions. J. Am. Chem. Soc. 120, 5343 (1998).

L.E. Brus. Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403 (1984).

W. Yu, L. Qu, W. Guo, X. Peng. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854 (2003).

E. Eychmuller, A. Hasselbarth, L. Katsikas, H. Weller. Photochemistry of semiconductor colloids. 36. Fluorescence investigations on the nature of electron and hole traps in Q-sized colloidal CdS particles. Ber. Bunsenges. Phys. Chem. 95, 79 (1991).

How to Cite
Naumenko, A., Kutsevol, N., Chumachenko, V., Pashchenko, V., Kutovyy, S., & Rawiso, M. (2018). Synthesis and Characterization of CdS Nanoparticles Obtained in Star-Like Dextran-Graft-Polyacrylamide Matrices. Ukrainian Journal of Physics, 62(10), 908.