Theory of Detection of Terahertz Radiation in Hybrid Plasmonic Structures with Drifting Electron Gas

  • Yu. M. Lyaschuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Korotyeyev V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
Keywords: THz plasmonics, THz detection, hybrid plasmonic structures

Abstract

The theory of non-linear interaction of electromagnetic radiation with hybrid plasmonic structure, which consists of the two-dimensional quantum heterostructure integrated with a plasmonic element in the form of a metal grating, is developed. In particular, the non-linear effect of a detection of high-frequency radiation by a drifting two-dimensional electron gas is examined. Based on the self-consistent solutions of the Maxwell and non-linear hydrodynamic equations in the frames of consistent perturbation theory of the second order, the expression of a photoresponse in the THz region is found. It is shown that the obtained expression contains an additional factor corresponding to the radiative decay rate. The latter was omitted in the previous theories. The presented theory is applied to the analysis of high-frequency properties of hybrid plasmonic structures on the basis of AlGaAs/GaAs quantum heterostructure. The influences of an optically thick substrate and the effect of the electron heating under high electron drifts on the spectral characteristics of the transmission/absorption coefficients and on the photoresponse spectra are analyzed. Some recommendations as for the design of efficient terahertz radiation detectors with the use of the hybrid plasmonic structures as a core element are given.

References

M. Tonouchi. Cutting-edge terahertz technology. Nature Photonics 1, 97 (2007).

https://doi.org/10.1038/nphoton.2007.3

F. Sizov, A. Rogalski. THz detectors. Prog. Quant. Electron. 34, 278 (2010).

https://doi.org/10.1016/j.pquantelec.2010.06.002

T. Otsuji, H. Karasawa, T. Watanabe, T. Suemitsu, M. Suemitsu, E. Sano, W. Knap, V. Ryzhii. Emission of terahertz radiation from two-dimensional electron systems in semiconductor nano-heterostructures. C. R. Physique 11, 421 (2010).

https://doi.org/10.1016/j.crhy.2010.04.002

A.V. Chaplik. Absorption and emission of electromagnetic waves by two-dimensional plasmons. Surf. Sci. Rep. 5, 289 (1985).

https://doi.org/10.1016/0167-5729(85)90010-X

V. Jakˇstas, I. Grigelionis, V. Janonis, G. Valuˇsis, I. Kaˇsalynas, G. Seniutinas, S. Juodkazis, P. Prystawko, M. Leszczy’nski. Electrically driven terahertz radiation of 2DEG plasmons in AlGaN/GaN structures at 110 K temperature. Appl. Phys. Lett. 110, 202101 (2017).

https://doi.org/10.1063/1.4983286

M.V. Krasheninnikov, A.V. Chaplik. Radiative decay of two-dimensional plasmons. Sov. Phys. JETP 61, 75 (1985).

M. Dyakonov, M. Shur. Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71, 2465 (1993).

https://doi.org/10.1103/PhysRevLett.71.2465

M.Ali Khorrami, S. El-Ghazaly, S.-Q. Yu, H. Naseem. Terahertz plasmon amplification using two-dimensional electron-gas layers. J. Appl. Phys. 111, 094501 (2012).

https://doi.org/10.1063/1.4709389

O. Sydoruk. Drifting plasmons in open two-dimensional channels: modal analysis. J. Phys. D: Appl. Phys. 46, 135103 (2013).

https://doi.org/10.1088/0022-3727/46/13/135103

S.A. Mikhailov. Tunable solid-state far-infrared sources: New ideas and prospects. Recent Res. Devel. Appl. Phys. 2, 65 (1999).

S.A. Mikhailov. Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems. Phys. Rev. B 58, 1517 (1998).

https://doi.org/10.1103/PhysRevB.58.1517

A.S. Petrov, D. Svintsov, V. Ryzhii, M.S. Shur. Amplifiedreflection plasmon instabilities in grating-gate plasmonic crystals. Phys. Rev. B 95, 045405 (2017).

https://doi.org/10.1103/PhysRevB.95.045405

M. Dyakonov, M. Shur. Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electron. Dev. 43, 1640 (1996).

https://doi.org/10.1109/16.536809

G.R. Aizin, D.V. Fateev, G.M. Tsymbalov, V.V. Popov. Terahertz plasmon photoresponse in a density modulated two-dimensional electron channel of a GaAs/AlGaAs fieldeffect transistor. Appl. Phys. Lett. 91, 163507 (2007).

https://doi.org/10.1063/1.2800369

G.R. Aizin, V.V. Popov, O.V. Polischuk. Plasmon enhanced electron drag and terahertz photoconductance in a grating-gated field-effect transistor with two-dimensional electron channel. Appl. Phys. Lett. 89, 143512 (2006).

https://doi.org/10.1063/1.2358836

W. Knap, Y. Deng, S. Rumyantsev, J.-Q. L¨u, M.S. Shur, C.A. Saylor, L.C. Brunel. Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor. Appl. Phys. Lett. 80, 3433 (2002);

https://doi.org/10.1063/1.1473685

W. Knap, Y. Deng, S. Rumyantsev, M.S. Shur. Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors. Appl. Phys. Lett. 81, 4637 (2002).

https://doi.org/10.1063/1.1525851

H. Marinchio, C. Palermo, A. Mahi, L. Varani, V. Korotyeyev. External excitation of hybrid plasma resonances in a gated semiconductor slab: An analytical study. J. Appl. Phys. 116, 013707 (2014).

https://doi.org/10.1063/1.4887116

K.Y. Xu, X.F. Lu, A.M. Song, G. Wang. Enhanced terahertz detection by localized surface plasma oscillations in a nanoscale unipolar diode. J. Appl. Phys. 103, 113708 (2008).

https://doi.org/10.1063/1.2937175

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangar, B. Grimbert, M. Faucher, G. Ducournau, C. Gaqui, I. Iniguez-de-la-Torre, J. Mateos, T. Gonzalez. Nonlinear nanochannels for room temperature terahertz heterodyne detection. Semicond. Sci. Technol. 28, 125024 (2013).

https://doi.org/10.1088/0268-1242/28/12/125024

W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lu, R. Gaska, M.S. Shur, G. Simin, X. Hu, M. Asif Khan, A. Saylor, L.C. Brunel. Nonresonant detection of terahertz radiation in field effect transistors. J. Appl. Phys. 91, 9346 (2002).

https://doi.org/10.1063/1.1468257

W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, M.S. Shur. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Appl. Phys. Lett. 85, 675 (2004).

https://doi.org/10.1063/1.1775034

M. Sakowicz, M. B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, W. Knap. Terahertz responsivityof field effect transistors versus their static channel conductivity and loading effects. J. Appl. Phys. 110, 054512 (2011).

https://doi.org/10.1063/1.3632058

S. Preu, S. Kim, R. Verma, P.G. Burke, M.S. Sherwin, A.C. Gossard. An improved model for non-resonant terahertz detection in field-effect transistors. J. Appl. Phys. 111, 024502 (2012).

https://doi.org/10.1063/1.3676211

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y.M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D.K. Maude, S. Rumyantseva, M.S. Shur. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Appl. Phys. Lett. 89, 253511 (2006).

https://doi.org/10.1063/1.2410215

A. Lisauskas, U. Pfeiffer, E. Ojefors, P.H. Bolivar, ¨ D. Glaab, H.G. Roskos. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 105, 114511 (2009).

https://doi.org/10.1063/1.3140611

F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, W. Knap. Broadband terahertz imaging with highly sensitive silicon CMOS detectors. Opt. Express 18, 7827 (2011).

https://doi.org/10.1364/OE.19.007827

J.-Q. L¨u, M.S. Shur, J.L. Hesler, L. Sun, R. Weike. Terahertz detector utilizing two-dimensional electronic fluid. IEEE Electron. Dev. Lett. 19, 373 (1998).

https://doi.org/10.1109/55.720190

A. El Fatimy, F. Teppe, N. Dyakonova, D. Seliuta, G. Valuˇsis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, S. Rumyantsev. Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors. Appl. Phys. Lett. 89, 131926 (2006).

https://doi.org/10.1063/1.2358816

S. Boubanga-Tombet, F. Teppe, D. Coquillat, S. Nadar, N. Dyakonova, H. Videlier, W. Knap, A. Shchepetov, C. Gardes, Y. Roelens, S. Bollaert, D. Seliuta, R. Vadoklis, G. Valuˇsis. Current driven resonant plasma wave detection of terahertz radiation: Toward the Dyakonov–Shur instability. Appl. Phys. Lett. 92, 212101 (2008).

https://doi.org/10.1063/1.2936077

T.A. Elkhatib, V.Yu. Kachorovskii, W.J. Stillman, S. Rumyantsev, X.-C. Zhang, M.S. Shur. Terahertz response of field-effect transistors in saturation regime. Appl. Phys. Lett. 98, 243505 (2011).

https://doi.org/10.1063/1.3584137

S. Danylyuk, P. Loosen, K. Bergmann, H. Kim, L. Juschkin. Scalability limits of Talbot lithography with plasmabased extreme ultraviolet sources. J. Micro/Nanolith. MEMS MOEMS 12 (3), 033002 (2013).

https://doi.org/10.1117/1.JMM.12.3.033002

G. Kunkem¨oller, T.W.W. Maß, A.-K.U. Michel, Hyun-Su Kim, S. Brose, S. Danylyuk, Th. Taubner, L. Juschkin. Extreme ultraviolet proximity lithography for fast, flexible and parallel fabrication of infrared antennas. Opt. Express 23 (20), 25487 (2015).

https://doi.org/10.1364/OE.23.025487

X.G. Peralta, S.J. Allen, M.C. Wanke, N.E. Harff, J.A. Simmons, P. Lilly, J.L. Reno, P.J. Burke, J.P. Eisenstein. Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors. Appl. Phys. Lett. 81, 1627 (2002).

https://doi.org/10.1063/1.1497433

E.A. Shaner, M. Lee, M.C. Wanke, A.D. Grine, J.L. Reno, S.J. Allen. Single-quantum-well grating-gated terahertz plasmon detectors. Appl. Phys. Lett. 87, 193507 (2005).

https://doi.org/10.1063/1.2128057

D.M. Yermolayev, K.M. Marem'yanin, D.V. Fateev, S.V. Morozov, N.A. Maleev, V.E. Zemlyakov, V.I. Gavrilenko, S.Yu. Shapoval, F.F. Sizov, V.V. Popov. Terahertz detection in a slit-grating-gate field-effect-transistor structure. Solid-State Electronics 86, 64 (2013).

https://doi.org/10.1016/j.sse.2012.09.009

N. Nader Esfahani, R.E. Peale, W.R. Buchwald, C.J. Fredricksen, J.R. Hendrickson, J.W. Cleary. Millimeter-wave photoresponse due to excitation of two-dimensional plasmons in InGaAs/InP high-electron-mobility transistors. J. Appl. Phys. 114, 033105 (2013).

https://doi.org/10.1063/1.4813511

V.V. Popov, D.V. Fateev, T. Otsuji, Y.M. Meziani, D. Coquillat, W. Knap. Plasmonic terahertz detection by adouble-grating-gate field-effect transistor structure with an asymmetric unit cell. Appl. Phys. Lett. 99, 243504 (2011).

https://doi.org/10.1063/1.3670321

V.V. Popov, D.V. Fateev, O.V. Polischuk, M.S. Shur. Enhanced electromagnetic coupling between terahertz radiation and plasmons in a grating-gate transistor structure on membrane substrate. Opt. Express 18, 16771 (2010).

https://doi.org/10.1364/OE.18.016771

Yu.M. Lyaschuk, V.V. Korotyeyev. Interaction of terahertz electromagnetic field with metallic grating: Nearfield zone. Ukr. J. Phys. Opt. 13, 142 (2012).

https://doi.org/10.3116/16091833/13/3/142/2012

M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander C.A. Ward. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Optics 22 (7), 1099 (1983).

https://doi.org/10.1364/AO.22.001099

O.V. Shapoval, R. Sauleau, A.I. Nosich. Scattering and absorption of waves by flat material strips analyzed using generalized boundary conditions and nystrom-type algorithm. IEEE Trans. Antennas Propag. 59, 3339 (2011).

https://doi.org/10.1109/TAP.2011.2161547

I.O. Sukharevsky, O.V. Shapoval, A. Altintas, A.I. Nosich. Validity and limitations of the median-line integral equation technique in the scattering by material strips of subwavelength thickness. IEEE Trans. Antennas Propag. 62, 3623 (2014).

https://doi.org/10.1109/TAP.2014.2316295

Yu.M. Lyaschuk, V.V. Korotyeyev. Interaction of a terahertz electromagnetic wave with the plasmonic system "grating–2D-gas". Analysis of features of the near field. Ukr. J. Phys. 59, 495 (2014).

https://doi.org/10.15407/ujpe59.05.0495

S.J. Allen, Jr., D.C. Tsui, R.A. Logan. Observation of the two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett. 38 (17), 980 (1977).

https://doi.org/10.1103/PhysRevLett.38.980

Hua Qin, Yao Yu, Xiang Li, Jiandong Sun, Yongdan Huang. Excitation of terahertz plasmon in two-dimensional electron gas. Terahertz Science and Technology 9 (2), 71 (2016).

R.E. Tyson, R.J. Stuart, H.P. Hughes, J.E.F. Frost, D.A. Ritchie, G.A.C. Jones, C. Shearwood. Non-linear Doppler shift of the plasmon resonance in a grating-coupled drifting 2DEG. Int. J. Infrared Millimeter Waves 14, 1237 (1993).

https://doi.org/10.1007/BF02146254

A.S. Bhatti, D. Richards, H.P. Hughes, D.A. Ritchie. Spatially resolved Raman scattering from hot acoustic and optic plasmons. Phys. Rev. B 53, 11016 (1996).

https://doi.org/10.1103/PhysRevB.53.11016

V.V. Korotyeyev. Theory of high-field electron transport in the heterostructures Al Ga1− As/GaAs/Al Ga1− with delta-doped barriers. Effect of real-space transfer. Semiconductor Physics, Quantum Electronics & Optoelectronics 18, 1 (2015).

https://doi.org/10.15407/spqeo18.01.001

W.T. Masselink. Electron velocity in GaAs: Bulk and selectively doped heterostructures. Semicond. Sci. Technol. 4, 503 (1989).

https://doi.org/10.1088/0268-1242/4/7/001

T.L. Zinenko, A.I. Nosich, Y. Okuno. Plane wave scattering and absorption by resistive-strip and dielectric-strip periodic gratings. IEEE Trans. Antennas Propag. 46 (10) 1498 (1998).

https://doi.org/10.1109/8.725282

A.I. Nosich. Method of analytical regularization in computational photonics. Radio Sci. 51, 1421 (2016).

https://doi.org/10.1002/2016RS006044

O.R. Matov, O.V. Polischuk, V.V. Popov. Electromagnetic emission from two-dimensional plasmons in a semiconductor-dielectric structure with metal grating: Rigorous theory. Int. J. Infrared Millimeter Waves 14 (7), 1455 (1993).

https://doi.org/10.1007/BF02084419

Published
2018-12-12
How to Cite
Lyaschuk, Y., & Korotyeyev, V. (2018). Theory of Detection of Terahertz Radiation in Hybrid Plasmonic Structures with Drifting Electron Gas. Ukrainian Journal of Physics, 62(10), 889. https://doi.org/10.15407/ujpe62.10.0889
Section
Solid matter