Using a Cell Fluid Model for the Description of a Phase Transition in Simple Liquid Alkali Metals

  • M. P. Kozlovskii Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • O. A. Dobush Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • I. V. Pylyuk Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
Keywords: cell fluid model, coexistence curve, collective variables, equation of state, first-order phase transition

Abstract

This article embraces a theoretical description of the first-order phase transition in liquid metals with the application of a cell fluid model. The results are obtained through the calculation of the grand partition function without a usage of phenomenological parameters. The Morse potential is used for the calculation of the equation of state and the coexistence curve. Specific results for sodium and potassium are obtained. Comparison of the outcome of analytic expressions with data of computer simulations is presented.

References

J.D. Bringas, J. Lopez-Lemus, B. Ibarra-Tandi, P. Orea. Liquid–vapour interface of simple fluids interacting by the modified Morse potential. Molecular Simulation 37, 449 (2011).

https://doi.org/10.1080/08927022.2011.551883

L.A. Bulavin, V.L. Kulinskii. Generalized principle of corresponding states and the scale invariant mean-field approach. J. Chem. Phys. 133, 134101 (2010).

https://doi.org/10.1063/1.3496468

M.V. Fedoryuk. Asymptotic methods in analysis. In Analysis I: Integral Representations and Asymptotic Methods. Encyclopaedia of Mathematical Sciences 13, eds. M.A. Evgrafov, R.V. Gamkrelidze (Springer, 1989) p. 83.

https://doi.org/10.1007/978-3-642-61310-4_2

I.A. Girifalko, V.G. Weizer. Application of the Morse potential function to cubic metals. Phys. Rev. 114, 687 (1959).

https://doi.org/10.1103/PhysRev.114.687

L.P. Kadanoff. More is the same; Phase transitions and mean field theories. J. Stat. Phys. 137, 777 (2009).

https://doi.org/10.1007/s10955-009-9814-1

Yu. Kozitsky, M. Kozlovskii. A phase transition in a continuum Curie–Weiss system with binary interactions. arXiv:1610.01845 [math-ph], (2016).

M.P. Kozlovskii, O.A. Dobush, R.V. Romanik. Concerning a calculation of the grand partition function of a fluid model. Ukr. J. Phys. 60, 805 (2015).

https://doi.org/10.15407/ujpe60.08.0808

M. Kozlovskii, O. Dobush. Representation of the grand partition function of the cell model: The state equation in the mean-field approximation. J. Mol. Liq. 215, 58 (2016).

https://doi.org/10.1016/j.molliq.2015.12.018

M.P. Kozlovskii. Free energy of 3D Ising-like system near the phase transition point. Cond. Mat. Phys. 12, 151 (2009).

https://doi.org/10.5488/CMP.12.2.151

M.P. Kozlovskii, O.A. Dobush. Phase transition in a cell fluid model. Condens. Matter Phys. 20, 23501 (2017).

https://doi.org/10.5488/CMP.20.23501

V.L. Kulinskii, N.P. Malomuzh. The nature of the rectilinear diameter singularity. Physica A 388, 621 (2009).

https://doi.org/10.1016/j.physa.2008.11.014

R.C. Lincoln, K.M. Koliwad. Morse-potential evaluation of second- and third-order elastic constants of some cubic metals. Phys. Rev. 157, 463 (1967).

https://doi.org/10.1103/PhysRev.157.463

J.F. Nicoll. Critical phenomena of fluids: Asymmetric Landau–Ginzburg–Wilson model. Phys. Rev. A 24, 2203 (1982).

https://doi.org/10.1103/PhysRevA.24.2203

A.L. Rebenko. Cell gas model of classical statistical systems Rev. Math. Phys. 25, 1330006 (2013).

https://doi.org/10.1142/S0129055X13300069

J.K. Singh, J. Adhikari, S.K. Kwak. Vapor–liquid phase coexistence curves for Morse fluids. Fluid Phase Equilibria 248, 1 (2006).

https://doi.org/10.1016/j.fluid.2006.07.010

I.R. Yukhnovskii. The phase transition of the first order in the critical region of the gas-liquid system. Cond. Mat. Phys. 17, 43001 (2014).

https://doi.org/10.5488/CMP.17.43001

Published
2018-12-12
How to Cite
Kozlovskii, M., Dobush, O., & Pylyuk, I. (2018). Using a Cell Fluid Model for the Description of a Phase Transition in Simple Liquid Alkali Metals. Ukrainian Journal of Physics, 62(10), 865. https://doi.org/10.15407/ujpe62.10.0865
Section
Soft matter