The Nature of Viscosity of Polyvinyl Alcohol Solutions in Dimethyl Sulfoxide and Water

  • O. V. Khorolskyi Poltava National V.G. Korolenko Pedagogical University
Keywords: cellular model, polyvinyl alcohol solution, macromolecular coil radius, Malomuzh–Orlov formula


The applicability of cellular approach (Einstein’s and Batchelor’s formulas) to describe the viscosity of solutions as a function of the volume concentration of macromolecular coils has been analyzed on the basis of viscosity experimental data for polyvinyl alcohol solutions in dimethyl sulfoxide and water. It is shown that the Malomuzh–Orlov formula obtained for the macromolecular coils modeled as a hard core and a rarefied periphery adequately describes the viscosity of polyvinyl alcohol solutions as a function of the volume fraction of macromolecular coils in them up to the overlap concentration. The concentration dependences were obtained for the effective radius of polyvinyl alcohol macromolecules in water and dimethyl sulfoxide. It was shown that the radius of polyvinyl alcohol coils decreases nonlinearly with the growth of the solution concentration.


R.O. Ebewele. Polymer Science and Technology (CRC Press, 2000) [ISBN: 0-0849-8939-9].

Yu.B. Mel'nichenko, L.A. Bulavin. Self-diffusion of water in gelatin gels: 2. Quasi-elastic neutron scattering data. Polymer 32, 3295 (1991).

A.K. Bajpai, S.K. Shukla, S. Bhanu, S. Kankane. Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 33, 1088 (2008).

D.L. Deskins, Sh. Ardestani, P.P. Young. The polyvinyl alcohol sponge model implantation. J. Vis. Exp. 62, 3885 (2012).

A. L’opez-Rubio, E. Sanchez, Y. Sanz, J.M. Lagaron. Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers. Biomacromolecules 10, 2823 (2009).

F. Kawai, X. Hu. Biochemistry of microbial polyvinyl alcohol degradation. Appl. Microbiol. Biotechnol. 84, 227 (2009).

O.V. Khorolskyi, O.P. Rudenko. Viscometric research of concentration regimes for polyvinyl alcohol solutions. Ukr. J. Phys. 60, 880 (2015).

I.Yu. Kir'yanov, A.S. Barybin, V.A. Michalchenko. Application of dimethyl sulfoxide (DMSO) in experimental and clinical radiology. Med. Radiolog. 8, 73 (1976) (in Russian).

A. Einstein. Eine neue Bestimmung der Molek¨uldimensionen. Ann. Phys. 19, 289 (1906).

G.K. Batchelor. An Introduction to Fluid Dynamics (Cambridge Univ. Press, 2000) [ISBN 0-521-66396-2].

N.P. Malomuzh, E.V. Orlov. A new version of cellular method for the determination of suspension viscosity. Kolloid. Zh. 64, 802 (2002) (in Russian).

N.P. Malomuzh, E.V. Orlov. Static shear viscosity of a bimodal suspension. Ukr. J. Phys. 50, 618 (2005).

E.V. Orlov. Shear viscosity of dispersions of particles with liquid shells. Colloid J. 72, 820 (2010).

Mowiol Brochure en KSE (Kuraray Specialities Europe KSE GmbH, 2003).

R. Hasegawa, Y. Takahashi, Y. Chatani, H. Tadokoro. Crystal structure of the three crystalline forms of poly(vinylidene fluoride). Polym. J. 3, 600 (1972).

C. Meng Kok, A. Rudin. A semi-empirical method for prediction of critical concentrations for polymer overlap in solution. Eur. Polym. J. 18, 363 (1982).

G. Tesei, G. Paradossi, E. Chiessi. Poly(vinyl alcohol) oligomer in dilute aqueous solution: a comparative molecular dynamics simulation study. J. Phys. Chem. B 116, 10008 (2012).

I.M. Lifshits, A.Yu. Grosberg, A.R. Khokhlov. Bulk interactions in the statistical physics of polymer macromolecule. Usp. Fiz. Nauk 127, 353 (1979) (in Russian).

S.B. Zimmerman, S.O. Trach. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 222, 599 (1991).

H.F. Abbasov, E.A. Masimov. Influence of potassium hydroxide on the formation of macromolecular coils in aqueous solutions of polyethylene glycol 20000. J. Qafqaz Univ. Phys. 4, 44 (2016).

How to Cite
Khorolskyi, O. (2018). The Nature of Viscosity of Polyvinyl Alcohol Solutions in Dimethyl Sulfoxide and Water. Ukrainian Journal of Physics, 62(10), 858.
Soft matter