Null One-Way Fields in the Kerr Spacetime

  • V. O. Pelykh Ya.S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Nat. Acad. of Sci. of Ukraine
  • Y. V. Taistra Ya.S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Nat. Acad. of Sci. of Ukraine
Keywords: massless field, null one-way field, Maxwell spinor, Kerr spacetime, separation of variables


Analytical solutions of the equations for massless fields with arbitrary spins have been obtained in the Kerr metric in the null one-way form, i.e. in the form of ingoing or outgoing, according to Chandrasekhar, fields propagating to or from a black hole, respectively. On the basis of the Newman–Penrose approach in the spinor formulation, the null one-way fields in the Petrov-type D spacetime are considered. A general analytical solution and an analytical solution with separated variables are found for the generalized equations of those fields in the Kerr metric. In the partial case of electromagnetic field, the Maxwell tensor and the energy-momentum tensor for the outgoing and ingoing one-way fields are calculated.


S. Teukolsky. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. Astrophys. J. 185, 635 (1973).

W.H. Press, S.A. Teukolsky. Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric. Astrophys. J. 185, 649 (1973).

S.A. Teukolsky, W.H. Press. Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation. Astrophys. J. 193, 443 (1973).

A.A. Starobinskii, S.M. Churilov. Amplification of electromagnetic and gravitational waves scattered by a rotating "black hole". Zh. Eksp. Teor. Fiz. ` 65, 3 (1974) (in Russian).

S. Chandrasekhar. The Mathematical Theory of Black Holes (Oxford Univ. Press, 1983).

P.P. Fiziev. Classes of exact solutions to the Teukolsky master equation. Class. Quant. Grav. 27, 135001 (2010).

S. Teukolsky. The Kerr metric. Class. Quant. Grav. 32, 124006 (2015).

Y.V. Taistra. New approach to Maxwell equations decoupling in curved spacetime. In WDS'13 Proceedings of Contributed Papers: Part III– Physics, edited by J. Safrankova, J. Pavlu (Matfyzpress, 2013), p. 39–44.

V.O. Pelykh, Yu.V. Taistra. Class of general solutions for Maxwell's equations in a Kerr spacetime. Mat. Metod. Fiz.-Mekh. Polya 59, 48 (2016) (in Ukrainian).

V.O. Pelykh, Y.V. Taistra. Solution with separable variables for null one-way Maxwell field in Kerr space-time. Acta Phys. Pol. B Proc. Suppl. 10, 387 (2017).

W.T.M. Irvine, D. Bouwmeester. Linked and knotted beams of light. Nature Phys. 4, 716 (2008).

H. Kedia, I. Bialynicki-Birula, D. Peralta-Salas, W. Irvine. Tying knots in light fields. Phys. Rev. Lett. 111, 150404 (2013).

G.P. Torres del Castillo 3-D Spinors, Spin-Weighted Functions and Their Applications (Birkh¨auser, 2003).

S. Chandrasekhar. On algebraically special perturbations of black holes. Proc. R. Soc. London, Ser. A 392, 1 (1984).

R.M. Wald. On perturbations of a Kerr black hole. J. Math. Phys. 14, 1453 (1973).

J. Jezierski, T. Smolka. A geometric description of Maxwell field in a Kerr spacetime. Class. Quant. Grav. 33, 125035 (2016).

M.V. Berry, M.R. Dennis. Knotted and linked phase singularities in monochromatic waves. Proc. R. Soc. Lond. A 457, 2251 (2001).

R. Penrose, W. Rindler. Spinors and Space-Time. TwoSpinor Calculus and Relativistic Fields, Vol. 1 (Cambridge Univ. Press, 1984).

W. Kinnersley. Type D vacuum metrics. J. Math. Phys. 10, 1195 (1969).

GRTensorIII for Maple [].

How to Cite
Pelykh, V., & Taistra, Y. (2018). Null One-Way Fields in the Kerr Spacetime. Ukrainian Journal of Physics, 62(11), 1007.
Astrophysics and cosmology