Polaron State in the Self-Consistent Electron-Deformation Field of the “Quantum Dot-Matrix” System

  • V. I. Hrushka Ivan Franko State Pedagogical University of Drohobych
  • R. M. Peleshchak Ivan Franko State Pedagogical University of Drohobych
Keywords: quantum dot, polaron, electron-deformation potential, binding energy, electron

Abstract

The potential well depth for an electron in a nanoheterosystem with quantum dots has been calculated in the framework of the self-consistent electron-deformation model. It is shown that the strained InAs/GaAs nanoheterosystem with InAs spherical quantum dots is characterized by deformation fields, which appear at the quantum dot-matrix interface and result in the enhancement of polaron effects in comparison with the unstrained material. The electron polaron energy is calculated, by considering the electrostatic energy and the energy associated with the mechanical and electron-deformation strain components in the quantum-dot and matrix materials.

References

S. Nizamoglu, H.V. Demir. Resonant nonradiative energy transfer in CdSe/ZnS core/shell nanocrystal solids enhances hybrid white light emitting diodes. Opt. Express 16, 13961 (2008).

https://doi.org/10.1364/OE.16.013961

R.J. Martin-Palma, M. Manso, V. Torres-Costa. Optical biosensors based on semiconductor nanostructures. Sensors 9, 5149 (2009).

https://doi.org/10.3390/s90705149

N. Mori, T. Ando. Electron–optical-phonon interaction in single and double heterostructures. Phys. Rev. B 40, 6175 (1989).

https://doi.org/10.1103/PhysRevB.40.6175

M.H. Degani. Energy-momentum relation for polarons in quantum-well wires. Phys. Rev. B 40, 11937 (1989).

https://doi.org/10.1103/PhysRevB.40.11937

S. Mukhopadhyay, A. Chatterjee. The ground and the first excited states of an electron in a multidimensional polar semiconductor quantum dot: An all-coupling variational approach. J. Phys.: Condens. Matter 11, 2071 (1999).

https://doi.org/10.1088/0953-8984/11/9/005

M. Krishna, S. Mukhopadhyay, A. Chatterjee. Bipolaronic phase in polar semiconductor quantum dots: An allcoupling approach. Phys. Lett. A 360, 655 (2007).

https://doi.org/10.1016/j.physleta.2006.09.020

V.M. Buimistrov, S.I. Pekar. Quantum states of particles coupled to a harmonically oscillating continuum with arbitrarily strong interaction. I. Case of absence of translational symmetry. JETP 5, 970 (1957).

I.P. Ipatova, A.Yu. Maslov, O.V. Proshina. Polaron state of a particle with degenerate energy spectrum in a quantum dot. Fiz. Tekh. Poluprovodn. 33, 832 (1999) (in Russian).

V.I. Hrushka, R.M Peleschchak. Binding energy of electron polaron in an InAs/GaAs quantum dot. Zh. Nano Elektr. Fiz. 8, 04068 (2016) (in Ukrainian).

Z.M. Wang, K. Holmes, Yu.I. Mazur, G.J. Salamo. Fabrication of (In, Ga) As quantum-dot chains on GaAs(100). Appl. Phys. Let. 84, 1931 (2004).

https://doi.org/10.1063/1.1669064

R.D. Vengrenovich, Yu.V. Gudyma, S.V. Yarema. Ostwald ripening of nanostructures with quantum dots. Fiz. Tekh. Poluprovodn. 35, 1440 (2001) (in Russian).

https://doi.org/10.1134/1.1427975

R.M. Peleshchak, I.Ya. Bachynsky. Electric properties of the interface quantum dot – matrix. Condens. Matter Phys. 12, 215 (2009).

https://doi.org/10.5488/CMP.12.2.215

V.P. Evtikhiev, O.V. Konstantinov, A.V. Matveentsev, A.E. Romanov. Light emission by a semiconductor structure with a quantum well and a quantum-dot array. Fiz. Tekh. Poluprovodn. 36, 79 (2002) (in Russian).

https://doi.org/10.1134/1.1434517

C. Teodosiu, Elastic Models of Crystal Defects (Springer, 1982).

https://doi.org/10.1007/978-3-662-11634-0

B.V. Novikov, G.G. Zegrya, R.M. Peleshchak, O.O. Dan'kiv, V.A. Gaisin, V.G. Talalaev, I.V. Shtrom, G.E. Tsyrlin. Baric properties of InAs quantum dots. Fiz. Tekh. Poluprovodn. 42, 1094 (2008) (in Russian).

https://doi.org/10.1134/S1063782608090133

R.M. Peleshchak, S.K. Guba,O.V. Kuzyk, I.V.Kurilo, O.O. Dan'kiv. Effect of Bi isovalent dopants on the formation of homogeneous coherently strained InAs quantum dots in GaAs matrices. Semiconductors 47, 349 (2013).

https://doi.org/10.1134/S1063782613030196

S. Fl¨ugge, Practical Quantum Mechanics (Springer, 1974).

C.G. Van de Walle. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871 (1989).

https://doi.org/10.1103/PhysRevB.39.1871

A. Qteish, R.J. Needs. Improved model-solid-theory calculations for valence-band offsets at semiconductor-semiconductor interfaces. Phys. Rev. B 45, 1317 (1992).

https://doi.org/10.1103/PhysRevB.45.1317

N. Moll, M. Scheffler, E. Pehlke. Influence of surface stress on the equilibrium shape of strained quantum dots. Phys. Rev. B 58, 4566 (1998).

https://doi.org/10.1103/PhysRevB.58.4566

R.M. Peleshchak, O.V. Kuzyk, O.O. Dan'kiv. Temperature regimes of formation of nanometer periodic structure of adsorbed atoms in GaAs semiconductors under the action of laser irradiation. Condens. Matter Phys. 18, 43801 (2015).

https://doi.org/10.5488/CMP.18.43801

V.Ya. Arsenin, Methods of Mathematical Physics and Special Functions (Nauka, 1984) (in Russian).

Published
2018-12-12
How to Cite
Hrushka, V., & Peleshchak, R. (2018). Polaron State in the Self-Consistent Electron-Deformation Field of the “Quantum Dot-Matrix” System. Ukrainian Journal of Physics, 62(11), 984. https://doi.org/10.15407/ujpe62.11.0984
Section
Nanosystems