Investigation on the Structural and Optical Properties of NiO Nanoflakes. Chemical Bath Deposition of Ni(OH)2 Thin Films

  • D. Abubakar Physics Department, Bauchi State University Gadau
  • N. Mahmoud Nano-Optoelectronics Research Laboratory (NOR) – School of Physics Universiti Sains Malaysia
  • Sh. Mahmud Nano-Optoelectronics Research Laboratory (NOR) – School of Physics, Universiti Sains Malaysia
Keywords: annealing temperature, nanoflakes, thin film, chemical bath deposition, nickel oxide

Abstract

Porous nickel oxide (NiO) nanoflakes are grown by the chemical bath deposition. The thin films are produced on an ITO/glass substrate and annealed at a variable temperature in a furnace. The structural and optical properties and the surface morphology of the thin films are studied and analyzed. FESEM results display the presence of nanoflakes with the structure of NiO/Ni(OH)2 in thin films that appear to increase in size with the annealing temperature. The sample grown at 300 ∘C is observed to have the highest surface area dimension. The EDX result reveals that the atomic ratio and weight of the treated sample has a non-stoichiometric value, which results in the p-type behavior of the NiO thin film. The result obtained by AFM indicates the highest roughness value (47.9 nm) for a sample grown at 300 ∘C. The analysis on XRD shows that the NiO nanoflakes possess a cubic structure with the orientation peaks of (111), (200), and (220). This appears with a stronger intensity at 300 ∘C. Likewise, XRD result approves the absence of the Ni(OH)2 peak at the annealing. For the optical band gap, the UV-Vis measurements give a lower value of 3.80 eV for 300 ∘C due to the highest crystallinity. The optimum temperature to synthesize high-quality NiO nanoflakes is 300 ∘C, which can be an important factor for good sensing devices.

References

C. Rovelli, L. Smolin. Spin networks and quantum gravity. Phys. Phys. D 52, 5743 (1995).

https://doi.org/10.1103/PhysRevD.52.5743

B.W. Shore. The Theory of Coherent Atomic Excitation (Wiley, 1990) [ISBN: 978-0471524175].

N. Sattarahmady, H. Heli, R.D. Vais. An electrochemical acetylcholine sensor based on lichen-like nickel oxide nanostructure. Biosens. Bioelectron. 48, 197 (2013).

https://doi.org/10.1016/j.bios.2013.04.001

S. Pereira, A. Gon¸calves, N. Correia, J. Pinto, L. Pereira, R. Martins, E. Fortunato. Electrochromic behavior of NiO thin films deposited by e-beam evaporation at room temperature. Sol. Energy Mater. Sol. Cells 120, 109 (2014).

https://doi.org/10.1016/j.solmat.2013.08.024

F.I. Dar, K.R. Moonoosawmy, M. Es-Souni. Morphology and property control of NiO nanostructures for supercapacitor applications. Nanoscale Res. Lett. 8, 363 (2013).

https://doi.org/10.1186/1556-276X-8-363

H. Pang, Q. Lu, Y. Zhang, Y. Li, F. Gao. Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. Nanoscale 2, 920 (2010).

https://doi.org/10.1039/c0nr00027b

L. Watkins. Development of non-noble catalysts for hydrogen and oxygen evolution in alkaline polymer electrolyte membrane electrolysis. Newcastle Univ. 9, 204 (2013).

Z.H. Ibupoto, K. Khun, M. Willander. Development of a pH sensor using nanoporous nanostructures of NiO. J. Nanosci. Nanotechnol. 14, 6699 (2014).

https://doi.org/10.1166/jnn.2014.9373

S. Sriram, A. Thayumanavan. Structural, optical and electrical properties of NiO thin films prepared by low cost spray pyrolysis technique. Int. J. Mater. Sci. Eng. 1, 118 (2014).

https://doi.org/10.12720/ijmse.1.2.118-121

D.S. Dalavi, M.J. Suryavanshi, D.S. Patil, S.S. Mali, A.V. Moholkar, S.S. Kalagi, S.A. Vanalkar, S.R. Kang, J.H. Kim, P.S. Patil. Nanoporous nickel oxide thin films and its improved electrochromic performance: Effect of thickness. Appl. Surf. Sci. 257, 2647 (2011).

https://doi.org/10.1016/j.apsusc.2010.10.037

B.D.L. Garc´ia-Gonz´alez, R. Aparicio. Sensors?: From biosensors to the electronic nose. Grasas y Aceites 53, 96 (2002).

https://doi.org/10.3989/gya.2002.v53.i1.293

G. Bodurov, T. Ivanova, K. Gesheva. Technology and application of transition metal oxide of W–V–O as functional layers and NiO thin films as counter electrode material in electrochromic "smart windows". Phys. Procedia 46, 149 (2013).

https://doi.org/10.1016/j.phpro.2013.07.057

W.L. Jang, Y.M. Lu, W.S. Hwang, C.L. Dong, P.H. Hsieh, C.L. Chen, T.S. Chan, J.F. Lee. A study of thermal decomposition of sputtered NiO films. Europhys. Lett. 96, 37009 (2011).

https://doi.org/10.1209/0295-5075/96/37009

K. Zhang, C. Rossi, P. Alphonse, C. Tenailleau. Synthesis of NiO nanowalls by thermal treatment of Ni film deposited onto a stainless steel substrate. Nanotechn. 19, 155605 (2008).

https://doi.org/10.1088/0957-4484/19/15/155605

S.F. Oboudi, N.F. Habubi, G.H. Mohamed, S.S. Chiad. Composition and optical dispersion characterization of nanoparticles ZnO–NiO thin films?: Effect of annealing temperature. Inter. Lette. Chem., Phys. Astron. 8, 78 (2013).

https://doi.org/10.18052/www.scipress.com/ILCPA.13.78

L. Li, K.S. Hui, K.N. Hui, H.W. Park, D.H. Hwang, S. Cho, S.K. Lee, P.K. Song, Y.R. Cho, H. Lee, Y.G. Son, W. Zhou. Synthesis and characterization of NiO-doped -type AZO films fabricated by sol–gel method. Mater. Lett. 68, 283 (2012).

https://doi.org/10.1016/j.matlet.2011.10.089

C. Li, S. Liu. Preparation and characterization of Ni(OH)2 and NiO mesoporous nanosheets. J. Nanomater. 2012, 1 (2012).

https://doi.org/10.1155/2012/591278

S.-Y. Park, H.-R. Kim, Y.-J. Kang, D.-H. Kim, J.-W. Kang. Organic solar cells employing magnetron sputtered -type nickel oxide thin film as the anode buffer layer. Sol. Energy Mater. Sol. Cells 94, 2332 (2010).

https://doi.org/10.1016/j.solmat.2010.08.004

Y. Lin, T. Xie, B. Cheng, B. Geng, L. Zhang. Ordered nickel oxide nanowire arrays and their optical absorption properties. Chem. Phys. Lett. 380, 521 (2003).

https://doi.org/10.1016/j.cplett.2003.09.066

X. Xia, J. Tu, X. Wang, C. Gu, X. Zhao. Hierarchically porous NiO film grown by chemical bath depositionvia a colloidal crystal template as an electrochemical pseudocapacitor material. J. Mater. Chem. 21, 671 (2011).

https://doi.org/10.1039/C0JM02784G

M.E.G. Lyons, A. Cakara, P. O'Brien, I. Godwin, R.L. Doyle. Redox, pH sensing and electrolytic water splitting properties of electrochemically generated nickel hydroxide thin films in aqueous alkaline solution. Int. J. Electrochem. Sci. 7, 11768 (2012).

M.A. Vidales-Hurtado, A. Mendoza-Galvan. Electrochromism in nickel oxide-based thin films obtained by chemical bath deposition. Solid State Ionics 179, 2065 (2008).

https://doi.org/10.1016/j.ssi.2008.07.003

A.I. Inamdar, Y. Kim, S.M. Pawar, J.H. Kim, H. Im, H. Kim. Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J. Power Sources 196, 2393 (2011).

https://doi.org/10.1016/j.jpowsour.2010.09.052

S.H. Basri, M. Arif, M. Sarjidan, W. Haliza, A. Majid. Structural and optical properties of nickel-doped and undoped zinc oxide thin films deposited by sol-gel method. Adv. Mater. Res. 895, 250 (2014).

https://doi.org/10.4028/www.scientific.net/AMR.895.250

Published
2018-12-12
How to Cite
Abubakar, D., Mahmoud, N., & Mahmud, S. (2018). Investigation on the Structural and Optical Properties of NiO Nanoflakes. Chemical Bath Deposition of Ni(OH)2 Thin Films. Ukrainian Journal of Physics, 62(11), 970. https://doi.org/10.15407/ujpe62.11.970
Section
Nanosystems