Features of the Formation of Cluster Compounds in Metal Solid Solutions

  • A. A. Abramov I.M. Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • V. G. Tkachenko I.M. Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
Keywords: cluster compounds, Auger electron spectrum, chemical (energy) shifts


Physical origins of the chemical (energy) shifting of Auger electron lines in the spectra of Al–Li, Ba (by 1.4 eV) and Mg–Ba (by 2 eV) systems containing cluster-forming alloying elements such as barium have been discussed. The observed peaks are associated with the formation of Al18Ba9 and Mg16Ba2 cluster compounds characterized by their own electron configurations.


V.G. Tkachenko, O.I. Kondrashev, I.M. Maksymchuk. Physical Foundations of Photoelectronics of Metal Crystals (Naukova Dumka, 2009) (in Ukrainian).

I.P. Suzdalev, P.I. Suzdalev. Discreteness of nanostructures and critical sizes of nanoclusters. Usp. Khim. 75, 715 (2006) (in Russian).


M.Yu. Siretskiy, M.G. Shelyapina, D. Fruchart, S. Miraglia, N.E. Skryabina. Influence of a transition metal atom on the geometry and electronic structure of Mg and Mg–H clusters. J. Alloy. Compd. 480, 114 (2009).


J. Zhao, B. Liu, H. Zhai, R.Zhou, G. Ni, Z. Xu. Mass spectrometric and first principles study of Al C− clusters. Solid State Commun. 122, 543 (2002).


V.G. Tkachenko, A.A. Shcheretskii, A.A. Abramov, A.N. Malka, A.S. Vovchok. Physico-mechanical properties of modificated magnesium alloys with cluster-forming melt structure. Elektron. Mikrosk. Prochn. Mater. No. 19, 52 (2013) (in Russian).

M. Sakata, N. Cowlam, H.A. Davies. Chemical short-range order in liquid and amorphous Cu66Ti34 alloys. J. Phys. F 11, L157 (1981).


W. van der Lugt, W. Geertsma. Liquid alloys with strong chemical interactions. J. Non-Cryst. Solids 61/62, 187 (1984).


P.S. Rudman. A theory of atom size difference induced short-range order. Acta Metallurg. 13, 387 (1965).


P.S. Rudman, B.L. Averbach. X-ray measurements of local atomic arrangements in aluminum-zinc and in aluminumsilver solid solutions. Acta Metallurg. 2, 576 (1954).


J. Friedel. Electronic structure of primary solid solutions in metals. Adv. Phys. 3, 446 (1954).


P.A. Flinn. Electronic theory of local order. Phys. Rev. 104, 350 (1956).


A.A. Abramov, V.G. Tkachenko, A.A. Shcheretskii, I.N. Maksimchuk, A.S. Vovchok. Supercooling features in liquid metal alloys with vatious chemical interaction of components. Elektron. Mikrosk. Prochn. Mater. No. 20, 52 (2014) (in Russian).

M.M. Nishchenko. Electronic Structure of Transition Metals, Their Alloys, and Intermetallic Compounds (Naukova Dumka, 1979) (in Russian).

V.G. Tkachenko, B.G. Strongin, I.N. Maksimchuk, V.V. Friesel, V.P. Grechko, S.P. Likhtarovich. Peculiarities of solid solution decay of hydride-forming and non-hydrideforming systems with close-packed crystal structure. Int. J. Hydrogen Energ. 21, 1091 (1996).


K.W. Andrews, D.J. Dyson, S.R. Keown. Interpretation of Electron Diffraction Patterns (Hilger and Watts, 1971).

M.G. Spirin, S.B. Brichkin, V.F. Razumov. Specifics of the preparation of anisotropically shaped gold nanoparticles in triton x-100 reverse micelles. Khim. Vys. Energ. 44, 54 (2010) (in Russian).


K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin. J. Hedman. G. Johansson, T. Bergmark, S.E. Karlsson, I. Lindgren, B. Lindberg. ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy (Almqvist and Wiksells, 1967).

R. Ferragut, A. Somoza, I. Torriani. Pre-precipitation study in the 7012 Al–Zn–Mg–Cu alloy by electrical resistivity. Mater. Sci. Eng. A 334, 1 (2002).


J.D. Embury, R.B. Nicholson. The nucleation of precipitates: The system Al–Zn–Mg. Acta Metallurg. 13, 403 (1965).


P. Entel, K. Radau, L. Meyer, H.C. Herper, M. Schr¨oter, E. Hoffmann. Large-scale molecular-dynamics simulations of martensitic nucleation and shape-memory effects in transition metal alloys. Phase Trans. 65, 79 (1998).


Yu.N. Gornostyrev, M.I. Katznelson, A.V. Kuznetsov, A.V. Trefilov. Simulation of martensitic transformations in a crystal with dislocations of various types in bcc-Zr. Fiz. Met. Metalloved. 91, No. 3, 32 (2001).

B.L. Eyre, J.H. Evans. An electron microscope study of the low temperature ageing behaviour of quenched molybdenum-nitrogen alloys. Acta Metallurg. 20, 267 (1972).


Yu.G. Poltavtsev. Structure of Semiconductor Melts (Metallurgiya, 1984) (in Russian).

V.G. Tkachenko, A.I. Kondrashev, I.N. Maksimchuk. Advanced metal alloy systems for massive high-current photocathodes. Appl. Phys. B 98, 839 (2010).


R. Weissmann, K. M¨uller. Auger electron spectroscopy – a local probe for solid surfaces. Surf. Sci. Rep. 1, 251 (1981).


V.G. Tkachenko, L.R. Shaginyan, A.I. Kondrashev, V.L. Bekenev, A.A. Lisenko, V.V. Kartuzov. Nanostructured emission-active aluminum alloys for high-current photocathodes with laser excitation. Nanostrukt. Materialoved. No. 4, 69 (2010) (in Russian).

V.G. Tkachenko, I.N. Maksimchuk, A.I. Kondrashev, I.I. Shulyak. Influence of the electron structure of nanoclus968 ters on the quantum yield of photoemission of magnesium alloys. Usp. Fiz. Metall. 5, 313 (2004) (in Russian).


V.V. Nemoskalenko, V.G. Aleshin. Theoretical Foundations of X-Ray Emission Spectroscopy (Naukova Dumka, 1974) (in Russian).

V.G. Tkachenko, Ya.V. Zaulichnyi, A.I. Kondrashev A.N. Malka, A.A. Abramov. Research of electron structure of magnesium and aluminum alloys by X-ray emission spectroscopy. Visn. Ukr. Material. Tovar. No. 1(5), 72 (2012) (in Russian).

How to Cite
Abramov, A., & Tkachenko, V. (2018). Features of the Formation of Cluster Compounds in Metal Solid Solutions. Ukrainian Journal of Physics, 62(11), 961. https://doi.org/10.15407/ujpe62.11.961