Investigation of Energy Levels and Electromagnetic Transitions for Yb–Pt Nuclei with N = 108 Using IBM, IVBM, and BMM

  • M. Abed Al-Jubbori Department of Physics, College of Education for Pure Science, University of Mosul
Keywords: IBM, IVBM, BMM, energy level, B(E2) value, PES

Abstract

The interacting boson and vector boson models, as well as the Bohr–Mottelson one, are employed to describe the energy levels and electromagnetic transitions of the 178Yb–186Pt (N = 108) nuclei. For the purpose of determining the evolution of the ground state, both r((I + 2)/I) and E-GOS ratios have been calculated as functions of the spin I. Based on the interacting vector boson model and Bohr–Mottelson model, the negative-parity and GSB bands have been calculated, while the interacting boson model is only employed to calculate GSB, y, and b. The interacting boson model is also used to calculate the reduced transition probabilities B(E2). The obtained findings show a very well agreement with experimentally obtained results elsewhere. We also used the intrinsic coherent state to obtain the potential energy surfaces. These results indicate that these nuclei have a rotational property SU(3), while 186Pt has property O(6).

References

F. Iachello, A. Arima, The Interacting Boson Model, (Cambridge Univ. Press, 1987).

https://doi.org/10.1017/CBO9780511895517

F. Iachello. Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Phys. Rev. Lett. 87, 052502 (2001).

https://doi.org/10.1103/PhysRevLett.87.052502

A. Bohr, B.R. Mottelson. Nuclear Structure, Vol. II (Word Scientific, 1998).

P. Cejnar, J. Jolie, R.F. Casten. Quantum phase transitions in the shapes of atomic nuclei. Rev. Mod. Phys. 82, 2155 (2010).

https://doi.org/10.1103/RevModPhys.82.2155

R.F. Casten, E.A. McCutchan. Quantum phase transitions and structural evolution in nuclei. J. Phys. G 34, R285 (2007).

https://doi.org/10.1088/0954-3899/34/7/R01

F. Iachello. Dynamic symmetries at the critical point. Phys. Rev. Lett. 85, 3580 (2000).

https://doi.org/10.1103/PhysRevLett.85.3580

H. Ganev, V.P. Garistov, A.I. Georgieva. Description of the ground and octupole bands in the symplectic extension of the interacting vector boson model. Phys. Rev. C 69, 014305 (2004).

https://doi.org/10.1103/PhysRevC.69.014305

M.A. Al-Jubbori, H.H. Kassim, F.I. Sharrad, I. Hossain. Nuclear structure of even 120−136Ba under the framework of IBM, IVBM and new method (SEF). Nucl. Phys. A 955, 101 (2016).

https://doi.org/10.1016/j.nuclphysa.2016.06.005

I. Mamdouh, M. Al-Jubbori. The rotational–vibrational properties of 178−188Os isotopes. Indian J. Phys. 89, 1085 (2015).

https://doi.org/10.1007/s12648-015-0679-7

S.N. Abood, M.A. Al-Jubbori. Nuclear structure and electromagnetic transitions investigation in Er isotopes within framework of interacting boson model. Commun. Theor. Phys. 60, 335 (2013).

https://doi.org/10.1088/0253-6102/60/3/13

E.H. Hagemann. Electromagnetic transitions from levels in the beta-vibrational band of 174Hf. Nucl. Phys. A 161, 449 (1971).

https://doi.org/10.1016/0375-9474(71)90380-0

T. Morikawa et al. Coulomb excitation of 174Hf K-isomer. X-ray spectroscopy with high-spin isomer beam. Phys. Lett. B 350, 169 (1995).

https://doi.org/10.1016/0370-2693(95)00345-L

K. Nomura et al. Microscopic formulation of the interacting boson model for rotational nuclei. Phys. Rev. C 83, 041302 (2011).

https://doi.org/10.1103/PhysRevC.83.041302

H.H. Kassim, A.A. Mohammed-Ali, F.I. Sharrad, I. Hossain, K. S. Jassim. Nuclear structure of even 178−182Hf isotopes under the framework of interacting boson model (IBM-1). Iran. Jou. Sci. Technol. Trans. Sci.

A. Arima, F. Iachello. Interacting boson model of collective nuclear states II. The rotational limit. Ann. Phys. N.Y. 111, 201 (1978).

https://doi.org/10.1016/0003-4916(78)90228-2

N.V. Zamfir, D. Kusnezov. Octupole correlations in the transitional actinides and the spdf interacting boson model. Phys. Rev. C 63, 054306 (2001).

https://doi.org/10.1103/PhysRevC.63.054306

F. Iachello. Dynamical supersymmetries in nuclei. Phys. Rev. Lett. 44, 772 (1980).

https://doi.org/10.1103/PhysRevLett.44.772

R.F. Casten, D.D. Warner. The interacting boson approximation. Rev. Mod. Phys. 60, 389 (1988).

https://doi.org/10.1103/RevModPhys.60.389

A. Georgieva, P. Raychev, R. Roussev. Interacting twovector-boson model of collective motions in nuclei. J. Phys. G: Nucl. Phys. 8, 1377 (1982).

https://doi.org/10.1088/0305-4616/8/10/008

B. Singh. Nuclear data sheets for = 172. Nuclear Data Sheets 75, 199 (1995).

https://doi.org/10.1006/ndsh.1995.1025

A. Georgieva, P. Raychev, R. Roussev. Rotational limit of the interacting two-vector boson model. J. Phys. G: Nucl. Phys. 9, 521 (1983).

https://doi.org/10.1088/0305-4616/9/5/005

A. Georgieva, P. Raychev, R. Roussev. Interacting vector boson model and negative parity bands in actinides. Bulg. J. Phys. 12, 147 (1985).

P. Raychev. Unified description of positive and negative parity states in the deformed heavy nuclei by means of two interacting vector bosons. Rev. Roum. Phys. 32, 471 (1987).

E. Acheterbeg, O.A. Capurro, G.V. Marti. Nuclear data sheets for = 178. Nucl. Data Sheets 110, 1473 (2009).

https://doi.org/10.1016/j.nds.2009.05.002

E.A. McCutchan. Nuclear data sheets for = 180. Nucl. Data Sheets 126, 151 (2015).

https://doi.org/10.1016/j.nds.2015.05.002

B. Singh. Nuclear data sheets for = 182. Nucl. Data Sheets 130, 21 (2015).

https://doi.org/10.1016/j.nds.2015.11.002

C.M. Baglin. Nuclear data sheets for = 184. Nucl. Data Sheets 111, 275 (2009).

https://doi.org/10.1016/j.nds.2010.01.001

P.H. Regan et al. Signature for vibrational to rotational evolution along the yrast line. Phys. Rev. Lett. 90, 152502 (2003).

https://doi.org/10.1103/PhysRevLett.90.152502

D. Bonatsos, L.D Skouras. Successive energy ratios in medium- and heavy-mass nuclei as indicators of different kinds of collectivity. Phys. Rev. C 43, 952R (1991).

https://doi.org/10.1103/PhysRevC.43.R952

O. Scholten. Computer code PHINT, KVI (Groningen, 1980).

D. Bonatsos et al. Δ = 1 staggering in octupole bands of light actinides: "Beat" patterns. Phys. Rev. C 62, 024301 (2000).

https://doi.org/10.1103/PhysRevC.62.024301

M.A. Al-Juboori, K. Al-Mtiuty, Kh.I. Saeed, F.I. Sharrad. Properties of even 168−178Hf isotopes using IBM-1 and SEF. Chin. Phys. C 41 (8) 084103 (2017).

https://doi.org/10.1088/1674-1137/41/8/084103

H.H. Kassim, F.I. Sharrad. Energy levels and electromagnetic transition of 190−196Pt nuclei. Inter. J. of Mod. Phys. E 23, 1450070 (2014).

https://doi.org/10.1142/S0218301314500700

J. Engel, F. Iachello. Quantization of asymmetric shapes in nuclei. Phys. Rev. Lett. 54, 1126 (1985).

https://doi.org/10.1103/PhysRevLett.54.1126

J. Engel, F. Iachello. Interacting boson model of collective octupole states: (I). The rotational limit. Nucl. Phys. A 472, 61(1987).

https://doi.org/10.1016/0375-9474(87)90220-X

D. Kusnezov, F. Iachello. A study of collective octupole states in barium in the interacting boson model. Phys. Lett. B 209, 420 (1988).

https://doi.org/10.1016/0370-2693(88)91166-5

D. Kusnezov. The U(16) algebraic lattice. J. Phys. A: Math. Gen. 22, 4271 (1989).

https://doi.org/10.1088/0305-4470/22/20/008

D. Kusnezov. The U(16) algebraic lattice. II. Analytic construction. J. Phys. A: Math. Gen. 23, 5673(1990).

https://doi.org/10.1088/0305-4470/23/24/010

N. V. Zamfir, D. Kusnezov. Octupole correlations in the transitional actinides and the spdf interacting boson model. Phys. Rev. C 63, 054306 (2001).

https://doi.org/10.1103/PhysRevC.63.054306

N.V. Zamfir, D. Kusnezov. Octupole correlations in U and Pu nuclei. Phys. Rev. C 67, 014305 (2003).

https://doi.org/10.1103/PhysRevC.67.014305

A.E.L. Dieperink, O. Scholten, F. Iachello. Classical limit of the interacting-boson model. Phys. Rev. Lett. 44, 1747 (1980).

https://doi.org/10.1103/PhysRevLett.44.1747

Published
2018-12-12
How to Cite
Al-Jubbori, M. (2018). Investigation of Energy Levels and Electromagnetic Transitions for Yb–Pt Nuclei with N = 108 Using IBM, IVBM, and BMM. Ukrainian Journal of Physics, 62(11), 936. https://doi.org/10.15407/ujpe62.11.0936
Section
Nuclei and nuclear reactions