Renovation of Interest in the Magnetoelectric Effect in Nanoferroics
DOI:
https://doi.org/10.15407/ujpe63.11.1006Keywords:
ferroics, multiferroics, nanoferroics, Landau–Ginzburg–Devonshire theory, magnetoelectric effectAbstract
Recent theoretical studies of the influence of the magnetoelectric effect on the physical properties of nanosized ferroics and multiferroics have been reviewed. Special attention is focused on the description of piezomagnetic, piezoelectric, and linear magnetoelectric effects near the ferroid surface in the framework of the Landau–Ginzburg–Devonshire phenomenological theory, where they are considered to be a result of the spontaneous surface-induced symmetry reduction. Therefore, nanosized particles and thin films can manifest pronounced piezomagnetic, piezoelectric, and magnetoelectric properties, which are absent for the corresponding bulk materials. In particular, the giant magnetoelectric effect induced in nanowires by the surface tension is possible. A considerable influence of size effects and external fields on the magnetoelectric coupling coefficients and the dielectric, magnetic, and magnetoelectric susceptibilities in nanoferroics is analyzed. Particular attention is paid to the influence of a misfit deformation on the magnetoelectric coupling in thin ferroic films and their phase diagrams, including the appearance of new phases absent in the bulk material. In the framework of the Landau–Ginzburg–Devonshire theory, the linear magnetoelectric and flexomagnetoelectric effects induced in nanoferroics by the flexomagnetic coupling are considered, and a significant influence of the flexomagnetic effect on the nanoferroic susceptibility is marked. The manifestations of size effects in the polarization and magnetoelectric properties of semiellipsoidal bismuth ferrite nanoparticles are discussed.
References
M.D. Glinchuk, A.V. Ragulya, V.A. Stephanovich. Nanoferroics (Springer, 2013). https://doi.org/10.1007/978-94-007-5992-3
J. Tingting, C. Zhenxiang, Z. Hongyang, K. Hideo. Domain switching in single-phase multiferroics. Appl. Phys. Rev. 5, 021102 (2018).
P. Curie. Sur la symetrie dans les ph’enom`enes physiques, sym’etrie d'un champ ´electrique et d'un champ magn’etique. J. Physique 3, 393 (1894).
L.D. Landau, E.M. Lifshitz. Electrodynamics of Continuous Media (Pergamon Press, 1984). I.E. Dzyaloshinskii. To magnetoelectric effect in antiferromagnets. Zh. ` Eksp. Teor. Fiz. 37, 881 (1959) (in Russian).
D.N. Astrov. The magnetoelectric effect in antiferromagnetics. Sov. Phys. JETP 11, 708 (1960).
V.J. Folen, G.T. Rado, E.W. Stalder. Anisotropy of the magnetoelectric effect in Cr2O3. Phys. Rev. Lett. 6, 607 (1961). https://doi.org/10.1103/PhysRevLett.6.607
J. Zhai et al. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature. Appl. Phys. Lett. 88, 062510 (2006). https://doi.org/10.1063/1.2172706
A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 74, 161306(R) (2006).
A.N. Morozovska, M.D. Glinchuk, E.A. Eliseev. Phase transitions induced by confinement of ferroic nanoparticles. Phys. Rev. B 76, 014102 (2007). https://doi.org/10.1103/PhysRevB.76.014102
E.A. Eliseev, M.D. Glinchuk, A.N. Morozovska. Appearance of ferroelectricity in thin films of incipient ferroelectric. Phys. Status Solidi B 244, 3660 (2007). https://doi.org/10.1002/pssb.200743159
M.D. Glinchuk, E.A. Eliseev, A.N. Morozovska, R. Blinc. Giant magnetoelectric effect induced by intrinsic surface stress in ferroic nanorods. Phys. Rev. B 77, 024106 (2008). https://doi.org/10.1103/PhysRevB.77.024106
M.D. Glinchuk A.N. Morozovska. The internal electric field originating from the mismatch effect and its influence on ferroelectric thin film properties. J. Phys.: Condens. Matter. 16, 3517 (2004). https://doi.org/10.1088/0953-8984/16/21/002
M.D. Glinchuk, A.N. Morozovska, E.A. Eliseev. Ferroelectric thin films phase diagrams with self-polarized phase and electret state. J. Appl. Phys. 99, 114102 (2006). https://doi.org/10.1063/1.2198940
J.F. Scott. Data storage: Multiferroic memories. Nature Mater. 6, 256 (2007). https://doi.org/10.1038/nmat1868
V.K. Wadhawan. Introduction to Ferroic Materials (Gordon and Breach, 2000). E. Roduner. Nanoscopic Materials. Size-Dependent Phenomena (RSC Publishing, 2006).
B. Ruette, S. Zvyagin, A.P. Pyatakov, A. Bush, J.F. Li, V.I. Belotelov, A.K. Zvezdin, D. Viehland.Magnetic-field-induced phase transition in BiFeO3 observed by higfield electron spin resonance: Cycloidal to homogeneous spin order. Phys. Rev. B 69, 064114 (2004). https://doi.org/10.1103/PhysRevB.69.064114
E.A. Eliseev, A.N. Morozovska, M.D. Glinchuk, B.Y. Zaulychny, V.V. Skorokhod, R. Blinc. Surface-induced piezomagnetic, piezoelectric, and linear magnetoelectric effects in nanosystems. Phys. Rev. B 82, 085408 (2010). https://doi.org/10.1103/PhysRevB.82.085408
E.A. Eliseev. Complete symmetry analyses of the surface-induced piezomagnetic, piezoelectric and linear magnetoelectric effects. Ferroelectrics 417, 100 (2011). https://doi.org/10.1080/00150193.2011.578503
M.D. Glinchuk, E.A. Eliseev, V.A. Stephanovich, R. Farhi. Ferroelectric thin film properties – Depolarization field and renormalization of a "bulk" free energy coefficients. J. Appl. Phys. 93, 1150 (2003). https://doi.org/10.1063/1.1529091
M.D. Glinchuk, A.N. Morozovska. Effect of surface tension and depolarization field on ferroelectric nanomaterial properties. Phys. Status Solidi B 238, 81 (2003). https://doi.org/10.1002/pssb.200301755
M.D. Glinchuk, I.V. Kondakova, V.V. Laguta, A.M. Slipenyuk, I.P. Bykov, A.V. Ragulya, V.P. Klimenko. Size effects in radiospectroscopy spectra of ferroelectric nanopowders. Acta Physica Polonica A 108, 47 (2005). https://doi.org/10.12693/APhysPolA.108.47
J.S. Speck, W. Pompe. Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. I. Theory. J. Appl. Phys. 76, 466 (1994). https://doi.org/10.1063/1.357097
L.D. Landau, E.M. Lifshitz. Theory of Elasticity (Butterworth-Heinemann, 1998).
V.I. Marchenko, A.Ya. Parshin. About elastic properties of the surface of crystals. Zh. ` Eksp. Teor. Fiz. 79, 257 (1980) [Sov. Phys. JETP 52, 129 (1980)].
V.A. Shchukin, D. Bimberg. Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125 (1999). https://doi.org/10.1103/RevModPhys.71.1125
S. Dong, J.F. Li, D. Viehland. Giant magneto-electric effect in laminate composites. Phil. Mag. Lett. 83, 769 (2003). https://doi.org/10.1080/09500830310001621605
J.Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003). https://doi.org/10.1126/science.1080615
W. Tian, V. Vaithyanathan, D.G. Schlom, Q. Zhan, S.Y. Yang, Y.H. Chu, R. Ramesh. Epitaxial integration of (0001) BiFeO3 with (0001) GaN. Appl. Phys. Lett. 90, 172908 (2007). https://doi.org/10.1063/1.2730580
H. Naganuma, N. Shimura, J. Miura, H. Shima, Sh. Yasui, K. Nishida, T. Katoda, T. Iijima, H. Funakubo, S. Okamura. Enhancement of ferroelectric and magnetic properties in BiFeO3 films by small amount of cobalt addition. J. Appl. Phys. 103, 07E314 (2008).
M.D. Glinchuk, E.A. Eliseev, A.N. Morozovska, R. Blinc. Misfit strain induced magnetoelectric coupling in thin ferroic films. J. Appl. Phys. 105, 084108 (2009). https://doi.org/10.1063/1.3108483
V.V. Eremenko, V.A. Sirenko. Magnetic and Magneto-Elastic Properties of Antiferromagnets and Superconductors (Naukova Dumka, 2004) [in Russian].
M.I. Kaganov, V.M. Tsukernik. Nature of Magnetism (Nauka, 1982) [in Russian].
A.K. Tagantsev. Electric polarization in crystals and response to thermal and elastic perturbations. Phase Trans. 35, 119 (1991). https://doi.org/10.1080/01411599108213201
W. Ma, L.E. Cross. Large flexoelectric polarization in ceramic lead magnesium niobate. Appl. Phys. Lett. 79, 4420 (2001). https://doi.org/10.1063/1.1426690
W. Ma, L.E. Cross. Flexoelectric polarization of barium strontium titanate in the paraelectric state. Appl. Phys. Lett. 81, 3440 (2002). https://doi.org/10.1063/1.1518559
W. Ma, L.E. Cross. Strain-gradient-induced electric polarization in lead zirconate titanate ceramic. Appl. Phys. Lett. 82, 3293 (2003). https://doi.org/10.1063/1.1570517
W. Ma, L.E. Cross. Flexoelectricity of barium titanate. Appl. Phys. Lett. 88, 2902 (2006). https://doi.org/10.1063/1.2211309
W. Ma. Flexoelectricity: Strain gradient effects in ferroelectrics. Phys. Scr. 129, 180 (2007). https://doi.org/10.1088/0031-8949/2007/T129/041
P. Zubko,G.Catalan,A.Buckley,P.R.L.Welche, J.F. Scott. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007). https://doi.org/10.1103/PhysRevLett.99.167601
G. Catalan, L.J. Sinnamon, J.M. Gregg. The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films. J. Phys.: Condens. Matter. 16, 2253 (2004). https://doi.org/10.1088/0953-8984/16/13/006
G. Catalan, B. Noheda, J. McAneney, L.J. Sinnamond, J.M. Gregg. Strain gradients in epitaxial ferroelectrics. Phys. Rev. B 72, 020102 (2005). https://doi.org/10.1103/PhysRevB.72.020102
N.D. Sharma, C.M. Landis P.J. Sharma. Piezoelectric thin-film superlattices without using piezoelectric materials. Appl. Phys. 108, 024304 (2010). https://doi.org/10.1063/1.3443404
M. Gharbi, Z.H. Sun, P. Sharma, K. White, S. El-Borgi. Flexoelectric properties of ferroelectrics and the nanoindentation size-effect. Int. J. Sol. Struct. 48, 249 (2011). https://doi.org/10.1016/j.ijsolstr.2010.09.021
M.S. Majdoub, P. Sharma, T. Cagin. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008). https://doi.org/10.1103/PhysRevB.77.125424
S.V. Kalinin, V. Meunier. Electronic flexoelectricity in low-dimensional systems. Phys. Rev. B 77, 033403 (2008). https://doi.org/10.1103/PhysRevB.77.033403
E.A. Eliseev, A.N. Morozovska, M.D. Glinchuk, R. Blinc. Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B 79, 165433 (2009). https://doi.org/10.1103/PhysRevB.79.165433
P. Lukashev, R.F. Sabirianov. Spin density in frustrated magnets under mechanical stress: Mn-based antiperovskites. J. Appl. Phys. 107 (9E), 115 (2010). https://doi.org/10.1063/1.3365136
P. Lukashev, R.F. Sabirianov. Flexomagnetic effect in frustrated triangular magnetic structures. Phys. Rev. B 82, 4417 (2010). https://doi.org/10.1103/PhysRevB.82.094417
G. Rupprecht, R.O. Bell. Dielectric constant in paraelectric perovskites. Phys. Rev. 135, 748 (1964). https://doi.org/10.1103/PhysRev.135.A748
Modern Crystallography: Vol. IV. Physical Properties of Crystals. Edited by L.A. Shuvalov (Springer, 1988).
D.B. Litvin. Magnetic physical-property tensors. Acta Cryst. A 50, 406 (1994). https://doi.org/10.1107/S0108767393011432
J.-P. Rivera. A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. Eur. Phys. J. B. 71, 299 (2009). https://doi.org/10.1140/epjb/e2009-00336-7
M.E. Lines, A.M. Glass. Principles and Applications of Ferroelectrics and Related Phenomena (Clarendon Press, 1977).
M.I. Kaganov, A.N. Omelyanchouk. Contribution to the phenomenological theory of a phase transition in a thin ferromagnetic plate. Zh. ` Eksp. Teor. Fiz. 34, 895 (1972).
I. Rychetsky. Deformation of crystal surfaces in ferroelastic materials caused by antiphase domain boundaries. J. Phys.: Condens. Matter. 9, 4583 (1997). https://doi.org/10.1088/0953-8984/9/22/010
S.P. Alpay, I.B. Misirlioglu, A. Sharma, Z.-G. Ban. Structural characteristics of ferroelectric phase transformations in single-domain epitaxial films. J. Appl. Phys. 95, 8118 (2004). https://doi.org/10.1063/1.1751630
Z.-G. Ban, S.P. Alpay, J.V. Mantese. Fundamentals of graded ferroic materials and devices. Phys. Rev. B 67, 4104 (2003). https://doi.org/10.1103/PhysRevB.67.184104
G. Akcay, S.P. Alpay, G.A. Rossetti, J.F. Scott. Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films. J. Appl. Phys. 103, 4104 (2008). https://doi.org/10.1063/1.2831222
Q.Y. Qiu, V. Nagarajan, S.P. Alpay. Film thickness versus misfit strain phase diagrams for epitaxial PbTiO3 ultra-thin ferroelectric films. Phys. Rev. B 78, 064117 (2008). https://doi.org/10.1103/PhysRevB.78.064117
E.A. Eliseev, M.D. Glinchuk, V. Khist, V.V. Skorokhod, R. Blinc, A.N. Morozovska. Linear magnetoelectric coupling and ferroelectricity induced by the flexomagnetic effect in ferroics. Phys. Rev. B 84, 174112 (2011). https://doi.org/10.1103/PhysRevB.84.174112
R. Perzynski, Y. Raikher. Surface effects in magnetic nanoparticles. In: Effect of Surface Anisotropy on the Magnetic Resonance Properties of Nanosize Ferroparticles (Springer, 2005), p. 141.
C.-L. Jia, V. Nagarajan, J.-Q. He, L. Houben, T. Zhao, R. Ramesh, K. Urban, R. Waser. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nature Mater. 6, 64 (2007). https://doi.org/10.1038/nmat1808
T. Moriya. Piezomagnetism in CoF2. J. Phys. Chem. Solids 11, 73 (1959). https://doi.org/10.1016/0022-3697(59)90043-5
G.A. Smolenskii, I.E. Chupis. Ferroelectromagnets. Sov. Phys. Usp. 25, 475 (1982). https://doi.org/10.1070/PU1982v025n07ABEH004570
M. Fiebig. Revival of the magnetoelectric effect. J. Phys. D 38, 123 (2005). https://doi.org/10.1088/0022-3727/38/8/R01
N.A. Spaldin, M. Fiebig. Materials science. The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005). https://doi.org/10.1126/science.1113357
J.M. Rondinelli, N.A. Spaldin. Structure and properties of functional oxide thin films: Insights from electronic-structure calculations. Adv. Mater. 23, 3363 (2011). https://doi.org/10.1002/adma.201101152
A.P. Pyatakov, A.K. Zvezdin. Magnetoelectric and multiferroic media. Physics-Uspekhi 55, 557 (2012). https://doi.org/10.3367/UFNe.0182.201206b.0593
R. Ramesh, A.N. Spaldin. Multiferroics: progress and prospects in thin films. Nature Mater. 6, 21 (2007). https://doi.org/10.1038/nmat1805
P.J. Ryan, J.-W. Kim, T. Birol, P. Thompson, J.-H. Lee, X. Ke, P.S. Normile, E. Karapetrova, P. Schiffer, S.D. Brown, C.J. Fennie, D.G. Schlom. Reversible control of magnetic interactions by electric field in a single-phase material. Nat. Commun. 4, 1334 (2013). https://doi.org/10.1038/ncomms2329
M.J. Haun, E. Furman, T.R. Halemane, L.E. Cross. Thermodynamic theory of the lead zirconate-titanate solid solution system. Part IV: Tilting of the oxygen octahedral. Ferroelectrics 99, 55 (1989). https://doi.org/10.1080/00150198908221439
E.V. Balashova, A.K. Tagantsev. Polarization response of crystals with structural and ferroelectric instabilities. Phys. Rev. B 48, 9979 (1993). https://doi.org/10.1103/PhysRevB.48.9979
A.K. Tagantsev, E. Courtens, L. Arzel. Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate. Phys. Rev. B 64, 224107 (2001). https://doi.org/10.1103/PhysRevB.64.224107
S.L. Hou, N. Bloembergen. Paramagnetoelectric effects in NiSO4·6 H2O. Phys. Rev. 138, 1218 (1965). https://doi.org/10.1103/PhysRev.138.A1218
V.V. Shvartsman, S. Bedanta, P. Borisov, W. Kleemann. (Sr,Mn)TiO3: A magnetoelectric multiglass. Phys. Rev. Lett. 101, 165704 (2008). https://doi.org/10.1103/PhysRevLett.101.165704
B. Howes, M. Pelizzone, P. Fischer, C. Tabaresmunoz, J-P. Rivera, H. Schmid. Characterisation of some magnetic and magnetoelectric properties of ferroelectric Pb(Fe1/2Nb1/2)O3. Ferroelectrics 54, 317 (1984). https://doi.org/10.1080/00150198408215879
T. Watanabe, K. Kohn. Magnetoelectric effect and low temperature transition of PbFe0.5Nb0.5O3 single crystal. Phase Trans. 15, 57 (1989). https://doi.org/10.1080/01411598908206837
W. Kleemann, V.V. Shvartsman, P. Borisov, A. Kania. Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0.5Nb0.5O3. Phys. Rev. Lett. 105, 257202 (2010). https://doi.org/10.1103/PhysRevLett.105.257202
V.V. Laguta, A.N. Morozovska, E.A. Eliseev, I.P. Raevski, S.I. Raevskaya, E.I. Sitalo, S.A. Prosandeev L. Bellaiche. Room-temperature paramagnetoelectric effect in magnetoelectric multiferroics Pb(Fe1/2Nb1/2)O3 and its solid solution with PbTiO3. J. Mater. Sci. 51, 5330 (2016). https://doi.org/10.1007/s10853-016-9836-4
J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M.E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S.V. Kalinin, S. Gemming, F. Wang, G. Catalan, J.F. Scott, N.A. Spaldin, J. Orenstein, R. Ramesh. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229 (2009). https://doi.org/10.1038/nmat2373
J. Seidel,P.Maksymovych,Y.Batra,A.Katan, S.-Y.Yang, Q. He, A.P. Baddorf, S.V. Kalinin, C.-H. Yang, J.-C. Yang, Y.-H. Chu, E.K.H. Salje, H. Wormeester, M. Salmeron, R. Ramesh, W. Domain. Conductivity in La-doped BiFeO3. Phys. Rev. Lett. 105, 197603 (2010). https://doi.org/10.1103/PhysRevLett.105.197603
Q. He, C.-H. Yeh, J.-C. Yang, G. Singh-Bhalla, C.-W. Liang, P.-W. Chiu G., Catalan, L.W. Martin, Y.-H. Chu, J.F. Scott, R. Ramesh. Magnetotransport at domain walls in BiFeO3, Phys. Rev. Lett. 108, 067203 (2012). https://doi.org/10.1103/PhysRevLett.108.067203
G. Catalan, J. Seidel, R. Ramesh, J.F. Scott. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012). https://doi.org/10.1103/RevModPhys.84.119
R.K. Vasudevan, A.N. Morozovska, E.A. Eliseev, J. Britson, J.-C. Yang, Y.-H. Chu, P. Maksymovych, L.Q. Chen, V. Nagarajan, S.V. Kalinin. Domain wall geometry controls conduction in ferroelectrics. Nano Lett. 12, 5524 (2012). https://doi.org/10.1021/nl302382k
A.N. Morozovska, K. Rama, P.M. Vasudevan, S.V. Kalinin, E.A. Eliseev. Anisotropic conductivity of uncharged domain walls in BiFeO3. Phys. Rev. B 86, 085315 (2012). https://doi.org/10.1103/PhysRevB.86.085315
P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski. Temperature dependence of the crystal and magnetic structures of BiFeO3. J. Phys. C 13, 1931 (1980).
G. Catalan, J.F. Scott. Physics and applications of bismuth ferrite. Adv. Mater. 21, 1 (2009). https://doi.org/10.1002/adma.200802849
Y.-H. Chu, Z. Qian, L.W. Martin, M.P. Cruz, P.-L. Yang, G.W. Pabst, F. Zavaliche, S.-Y. Yang, J.-X. Zhang, L.-Q. Chen, D.G. Schlom, I.-N. Lin, T.-B. Wu, R. Ramamoorthy. Nanoscale domain control in multiferroic BiFeO3 thin films. Adv. Mater. 18, 2307 (2006). https://doi.org/10.1002/adma.200601098
Y.-H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A. Fraile-Rodr’ıguez, A. Scholl, S.X. Wang, R. Ramesh. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478 (2008). https://doi.org/10.1038/nmat2184
P. Maksymovych, M. Huijben, M. Pan, S. Jesse, N. Balke, Y.-H. Chu, H.J. Chang, A.Y. Borisevich, A.P. Baddorf, G. Rijnders, D.H.A. Blank, R. Ramesh, S.V. Kalinin. Ultrathin limit and dead-layer effects in local polarization switching of BiFeO3. Phys. Rev. B 85, 014119 (2012). https://doi.org/10.1103/PhysRevB.85.014119
C. Beekman, W. Siemons, M. Chi, N. Balke, J.Y. Howe, T.Z. Ward, P. Maksymovych, J.D. Budai, J.Z. Tischler, R. Xu, W. Liu, H.M. Christen. Ferroelectric self-poling, switching, and monoclinic domain configuration in BiFeO3 thin films. Adv. Funct. Mater. 26, 5166 (2016). https://doi.org/10.1002/adfm.201600468
A.Y. Borisevich, O.S. Ovchinnikov, C.H. Jung, M.P. Oxley, Y. Pu, S. Jan, E.A. Eliseev, A.N. Morozovska, R. Ramesh, S.J. Pennycook, S.V. Kalinin. Beyond condensed matter physics on the nanoscale: The role of ionic and electrochemical phenomena in the physical functionalities of oxide materials. ACS Nano 4, 6071 (2010). https://doi.org/10.1021/nn1011539
N. Balke, B. Winchester, W. Ren, Y.H. Chu, A.N. Morozovska, E.A. Eliseev, M. Huijben, K.R. Vasudevan, P. Maksymovych, J. Britson, S. Jesse, I. Kornev, R. Ramesh, L. Bellaiche, L.Q. Chen, S.V. Kalinin. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nature Phys. 8, 81 (2012).
Y.-M. Kim, A. Kumar, A. Hatt, A.N. Morozovska, A. Tselev, M.D. Biegalski, I. Ivanov, E.A. Eliseev, S.J. Pennycook, J.M. Rondinelli, S.V. Kalinin, A.Y. Borisevich. Interplay of octahedral tilts and polar order in BiFeO3 films. Adv. Mater. 25, 2497 (2013). https://doi.org/10.1002/adma.201204584
R.K. Vasudevan, W. Wu, J.R. Guest, A.P. Baddorf, A.N. Morozovska, E.A. Eliseev, N. Balke, V. Nagarajan, P. Maksymovych. Domain wall conduction and polarization-mediated transport in ferroelectrics. Adv. Funct. Mater. 23, 2592 (2013). https://doi.org/10.1002/adfm.201300085
Y.-M. Kim, A. Morozovska, E. Eliseev, M. Oxley, R. Mishra, T. Grande, S. Selbach, S. Pantelides, S. Kalinin, A. Borisevich. Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFeO3/LaxSr1−xMnO3 interface. Nature Mater. 13, 1019 (2014). https://doi.org/10.1038/nmat4058
B. Winchester, N. Balke, X.X. Cheng, A.N. Morozovska, S. Kalinin, L.Q. Chen. Electroelastic fields in artificially created vortex cores in epitaxial BiFeO3 thin films. Appl. Phys. Lett. 107, 052903 (2015). https://doi.org/10.1063/1.4927750
J.F. Scott. Iso-structural phase transitions in BiFeO3. Adv. Mater. 22, 2106 (2010). https://doi.org/10.1002/adma.200904229
S. Layek, H.C. Verma. Magnetic and dielectric properties of multiferroic BiFeO3 nanoparticles synthesized by a novel citrate combustion method. Adv. Mat. Lett. 3, 533 (2012). https://doi.org/10.5185/amlett.2012.icnano.242
Fengzhen Huang, Zhijun Wang, Xiaomei Lu, Junting Zhang, Kangli Min, Weiwei Lin, Ruixia Ti, TingTing Xu, Ju He, Chen Yue, Jinsong Zhu. Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure. Sci. Rep. 3, 2907 (2013). https://doi.org/10.1038/srep02907
D. Yadlovker, S. Berger. Uniform orientation and size of ferroelectric domains. Phys. Rev. B 71, 184112 (2005). https://doi.org/10.1103/PhysRevB.71.184112
D. Yadlovker, S. Berger. Reversible electric field induced nonferroelectric to ferroelectric phase transition in single crystal nanorods of potassium nitrate. Appl. Phys. Lett. 91, 173104 (2007). https://doi.org/10.1063/1.2801522
D. Yadlovker, S. Berger. Nucleation and growth of single crystals with uniform crystallographic orientation inside alumina nanopores. J. Appl. Phys. 101, 034304 (2007). https://doi.org/10.1063/1.2433999
M.H. Frey, D.A. Payne. Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B 54, 3158 (1996). https://doi.org/10.1103/PhysRevB.54.3158
Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni. Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 024107 (2004). https://doi.org/10.1103/PhysRevB.70.024107
E. Erdem, H.-Ch. Semmelhack, R. Bottcher, H. Rumpf, J. Banys, A. Matthes, H.-J. Glasel, D. Hirsch, E. Hartmann. Study of the tetragonal-to-cubic phase transition in PbTiO3 nanopowders. J. Phys.: Condens. Matter 18, 3861 (2006). https://doi.org/10.1088/0953-8984/18/15/028
I.S. Golovina, S.P. Kolesnik, V. Bryksa, V.V. Strelchuk, I.B. Yanchuk, I.N. Geifman, S.A. Khainakov, S.V. Svechnikov, A.N. Morozovska. Defect driven ferroelectricity and magnetism in nanocrystalline KTaO3. Physica B. 407, 614 (2012). https://doi.org/10.1016/j.physb.2011.11.044
I.S. Golovina, V.P. Bryksa, V.V. Strelchuk, I.N. Geifman, A.A. Andriiko. Size effects in the temperatures of phase transitions in KNbO3 nanopowder. J. Appl. Phys. 113, 144103 (2013). https://doi.org/10.1063/1.4801794
I.S. Golovina, V.P. Bryksa, V.V. Strelchuk, I.N. Geifman. Phase transitions in the nanopowders KTa0.5Nb0.5O3 studied by Raman spectroscopy. Funct. Mater. 20, 75 (2013). https://doi.org/10.15407/fm20.01.075
I.S. Golovina, V.P. Bryksa, V.V. Strelchuk, I.N. Geifman, A.A. Andriiko. Magnetic properties of nanocrystalline KNbO3. J. Appl. Phys. 114, 174106 (2013). https://doi.org/10.1063/1.4829702
T. Yu, Z.X. Shen, W.S. Toh, J.M. Xue, J. Wang. Size effect on the ferroelectric phase transition in SrBi2Ta2O9 nanoparticles. J. Appl. Phys. 94, 618 (2003). https://doi.org/10.1063/1.1583146
H. Ke, D.C. Jia, W. Wang, Y. Zhou. Ferroelectric phase transition investigated by thermal analysis and Raman scattering in SrBi2Ta2O9 nanoparticles. Solid State Phenom. 121–123, 843 (2007). https://doi.org/10.4028/www.scientific.net/SSP.121-123.843
P. Perriat, J.C. Niepce, G. Caboche. Thermodynamic considerations of the grain size dependency of material properties: a new approach to explain the variation of the dielectric permittivity of BaTiO3 with grain size. J. Therm. Anal. Calorim. 41, 635 (1994). https://doi.org/10.1007/BF02549339
H. Huang, C.Q. Sun, P. Hing. Surface bond contraction and its effect on the nanometric sized lead zirconate titanate. J. Phys.: Condens. Matter 12, 127 (2000). https://doi.org/10.1088/0953-8984/12/6/111
H. Huang, C.Q. Sun, Z. Tianshu, P. Hing. Grain-size effect on ferroelectric Pb(Zr1−xTix)O3 solid solutions induced by surface bond contraction. Phys. Rev. B 63, 184112 (2001). https://doi.org/10.1103/PhysRevB.63.184112
M. Wenhui. Surface tension and Curie temperature in ferroelectric nanowires and nanodots. Appl. Phys. A 96, 915 (2009). https://doi.org/10.1007/s00339-009-5246-7
A.N. Morozovska, E.A. Eliseev, M.D. Glinchuk. Ferroelectricity enhancement in confined nanorods: Direct variational method. Phys. Rev. B 73, 214106 (2006). https://doi.org/10.1103/PhysRevB.73.214106
A.N. Morozovska, I.S. Golovina, S.V. Lemishko, A.A. Andriiko, S.A. Khainakov, E.A. Eliseev. Effect of Vegard strains on the extrinsic size effects in ferroelectric nanoparticles. Phys. Rev. B 90, 214103 (2014). https://doi.org/10.1103/PhysRevB.90.214103
A.N. Morozovska, M.D. Glinchuk. Reentrant phase in nanoferroics induced by the flexoelectric and Vegard effects. J. Appl. Phys. 119, 094109 (2016). https://doi.org/10.1063/1.4942859
E.A. Eliseev, A.V. Semchenko, Y.M. Fomichov, M.D. Glinchuk, V.V. Sidsky, V.V. Kolos, Yu.M. Pleskachevsky, M.V. Silibin, N.V. Morozovsky, A.N. Morozovska. Surface and finite size effects impact on the phase diagrams, polar and dielectric properties of (Sr,Bi)Ta2O9 ferroelectric nanoparticles. J. Appl. Phys. 119, 204104 (2016). https://doi.org/10.1063/1.4952707
P. Perriat, J.C. Niepce, G. Caboche. Thermodynamic considerations of the grain size dependency of material properties: A new approach to explain the variation of the dielectric permittivity of BaTiO3 with grain size. J. Therm. Anal. Calorim. 41, 635 (1994). https://doi.org/10.1007/BF02549339
H. Huang, C.Q. Sun, P. Hing. Surface bond contraction and its effect on the nanometric sized lead zirconate titanate. J. Phys.: Condens. Matter 12, 127 (2000). https://doi.org/10.1088/0953-8984/12/6/111
H. Huang, C.Q. Sun, Z. Tianshu, P. Hing. Grain-size effect on ferroelectric Pb(Zr1−xTix)O3 solid solutions induced by surface bond contraction. Phys. Rev. B 63, 184112 (2001). https://doi.org/10.1103/PhysRevB.63.184112
V.V. Khist, E.A. Eliseev, M.D. Glinchuk, M.V. Silibin, D.V. Karpinsky, A.N. Morozovska. Size effects of ferroelectric and magnetoelectric properties of semi-ellipsoidal bismuth ferrite nanoparticles. J. Alloys Comp. 714, 303 (2017). https://doi.org/10.1016/j.jallcom.2017.04.201
A.K. Tagantsev, G. Gerra. Interface-induced phenomena in polarization response of ferroelectric thin films. J. Appl. Phys. 100, 051607 (2006). https://doi.org/10.1063/1.2337009
M. Fiebig. Revival of the magnetoelectric effect. J. Phys. D 38, 123 (2005). https://doi.org/10.1088/0022-3727/38/8/R01
D. Rahmedov, S. Prosandeev, J. ´ I˜niguez, L. Bellaiche. Magnetoelectric signature in the magnetic properties of antiferromagnetic multiferroics: Atomistic simulations and phenomenology. Phys. Rev. B 88, 224405 (2013). https://doi.org/10.1103/PhysRevB.88.224405
M.D. Glinchuk, E.A. Eliseev, Y. Gu, L.-G. Chen, V. Gopalan, A.N. Morozovska. Electric-field induced ferromagnetic phase in paraelectric antiferromagnets. Phys. Rev. B 89, 101412 (2014). https://doi.org/10.1103/PhysRevB.89.014112
M.D. Glinchuk, E.A. Eliseev, A.N. Morozovska. New room temperature multiferroics on the base of single-phase nanostructured perovskites. J. Appl. Phys. 116, 054101 (2014). https://doi.org/10.1063/1.4891459
V.V. Laguta, A.N. Morozovska, E.A. Eliseev, I.P. Raevski, S.I. Raevskaya, E.I. Sitalo, S.A. Prosandeev, L. Bellaiche. Room-temperature paramagnetoelectric effect in magnetoelectric multiferroics Pb(Fe1/2Nb1/2)O3 and its solid solution with PbTiO3. J. Mater. Sci. 51, 5330 (2016). https://doi.org/10.1007/s10853-016-9836-4
S. Prosandeev, I.A. Kornev, L. Bellaiche. Magnetoelectricity in BiFeO3 films: First-principles based computations and phenomenology. Phys. Rev. B 83, 020102 (2011). https://doi.org/10.1103/PhysRevB.83.020102
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.