Implantation of Deuterium and Helium Ions into a Tungsten-Coated Composite Structures
DOI:
https://doi.org/10.15407/ujpe65.1.61Keywords:
radiation-induced defects, deuterium, helium, ion implantation, thermal desorption, tungsten coating, composite materialsAbstract
The capture, retention, and thermal desorption of deuterium and helium ions with medium energies implanted into tungsten-coated multilayer functional structures and the formation of corresponding radiation-induced damages in the crystal lattice of the tungsten coatings of those structures have been studied making use of the thermal desorption spectroscopy and electron microscopy methods. The behavior of deuterium and helium in the examined materials and its dependence on the post-implantation heating temperature, the dose of irradiation with D+ and He+ ions, and the irradiation condition – separate (making use of ions of only one kind) or sequential (making use of ions of both kinds) – are analyzed. A classification of radiation-induced defects and mechanisms of their annealing are proposed.
References
R.A. Causey. Hydrogen isotope retention and recycling in fusion reactor plasma-facing components. J. Nucl. Mater. 300, 91 (2002). https://doi.org/10.1016/S0022-3115(01)00732-2
C.H. Skinner, A.A. Haasz, V.Kh. Alimov, N. Bekris, R.A. Causey, R.E.H. Clark, J.P. Coad, J.W. Davis, R.P. Doerner, M. Mayer, A. Pisarev. Recent advances on hydrogen retention in ITER's plasma-facing materials: beryllium, carbon, and tungsten. Fusion Sci. Technol. 54, 891 (2008). https://doi.org/10.13182/FST54-891
F. Liu, Y. Zhang, W. Han, Zh. Shen, J. Yu, G. Lu, K. Zhu. Investigation of hydrogen behavior in tungsten exposed to high energy hydrogen plasma. Nucl. Instrum. Meth. B 307, 320 (2013). https://doi.org/10.1016/j.nimb.2012.11.069
W. Hu, F. Luo, Z. Shen, L. Guo, Zh. Zheng, Y. Wen, Y. Ren. Hydrogen bubble formation and evolution in tungsten under different hydrogen irradiation conditions. Fusion Eng. Des. 90, 23 (2015). https://doi.org/10.1016/j.fusengdes.2014.10.007
Y. Furuta, I. Takagi, Sh. Kawamura, K. Yamamichi, M. Akiyoshi, T. Sasaki, T. Kobayashi. In situ deuterium observation in deuterium-implanted tungsten. Nucl. Instrum. Meth. B 315, 121 (2013). https://doi.org/10.1016/j.nimb.2013.03.039
T. Ahlgren, K. Heinola, K. Vortler, J. Keinonen. Simulation of irradiation induced deuterium trapping in tungsten. J. Nucl. Mater. 427, 152 (2012). https://doi.org/10.1016/j.jnucmat.2012.04.031
A. Debelle, P.-E. Lhuillier, M.-F. Barthe, T. Sauvage, P. Desgardin. Helium desorption in 3He implanted tungsten at low fluence and low energy. Nucl. Instrum. Meth. B 268, 223 (2010). https://doi.org/10.1016/j.nimb.2009.10.176
I.I. Arkhipov, S.L. Kanashenko, V.M. Sharapov, R.Kh. Zalavutdinov, A.E. Gorodetsky. Deuterium trapping in ion-damaged tungsten single crystal. J. Nucl. Mater. 363-365, 1168 (2007). https://doi.org/10.1016/j.jnucmat.2007.01.150
H. Iwakiri, K. Yasunaga, K. Morishita, N. Yoshida. Microstructure evolution in tungsten during low-energy helium ion irradiation. J. Nucl. Mater. 283-287, 1134 (2000). https://doi.org/10.1016/S0022-3115(00)00289-0
Y. Watanabe, H. Iwakiri, N. Yoshida, K. Morishita, A. Kohyama. Formation of interstitial loops in tungsten under helium ion irradiation: Rate theory modeling and experiment. Nucl. Instrum. Meth. B 255, 32 (2007). https://doi.org/10.1016/j.nimb.2006.11.008
P.E. Lhuillier, A. Debelle, T. Belhabib, A.L. Thomann, P. Desgardin, T. Sauvage, M. F. Barthe, P. Brault, Y. Tessier. Helium desorption in 3He implanted tungsten at low energy. J. Nucl. Mater. 417, 504 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.174
O. El-Atwani, K. Hattar, J.A. Hinks, G. Greaves, S.S. Harilal, A. Hassanein. Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions. J. Nucl. Mater. 458, 216 (2015). https://doi.org/10.1016/j.jnucmat.2014.12.095
S. Nagata, K. Takahiro. Effect of helium irradiation on trapping and thermal release of deuterium implanted in tungsten. J. Nucl. Mater. 290-293, 135 (2001). https://doi.org/10.1016/S0022-3115(00)00430-X
H. Iwakiri, K. Morishita, N. Yoshida. Effects of helium bombardment on the deuterium behavior in tungsten. J. Nucl. Mater. 307-311, 135 (2002). https://doi.org/10.1016/S0022-3115(02)01178-9
S. Nagata, S. Yamamoto, K. Tokunaga, B. Tuschiya, K. Toh, T. Shikama. Hydrogen up-take in noble gas implanted W. Nucl. Instrum. Meth. B 242, 535 (2006). https://doi.org/10.1016/j.nimb.2005.08.068
Y. Sakoi, M. Miyamoto, K. Ono, M. Sakamoto. Helium irradiation effects on deuterium retention in tungsten. J. Nucl. Mater. 442, S715 (2013). https://doi.org/10.1016/j.jnucmat.2012.10.003
F. Liu, Sh. Peng, H. Ren, Zh. Long, W. Han, J. Yu, Zh. Chen, K. Zhu. Effect of the displacement damage from argon ion irradiation on the synergistic effect of helium-hydrogen in tungsten. Fusion Eng. Des. 89, 2516 (2014). https://doi.org/10.1016/j.fusengdes.2014.05.023
Y. Nobuta, Y. Hatano, M. Matsuyama, S. Abe, Y. Yamauchi, T. Hino. Helium irradiation effects on tritium retention and long-term tritium release properties in poly-crystalline tungsten. J. Nucl. Mater. 463, 993 (2015). https://doi.org/10.1016/j.jnucmat.2014.12.047
C. Garc'ıa-Rosales, P. Franzen, H. Plank, J. Roth, E. Gauthier. Re-emission and thermal desorption of deuterium from plasma sprayed tungsten coatings for application in ASDEX-upgrade. J. Nucl. Mater. 233-237, 803 (1996). https://doi.org/10.1016/S0022-3115(96)00185-7
I. Bizyukov, K. Krieger, N. Azarenkov, S. Levchuk, Ch. Linsmeier. Formation of D inventories and structural modifications by deuterium bombardment of tungsten thin films. J. Nucl. Mater. 337-339, 965 (2005). https://doi.org/10.1016/j.jnucmat.2004.09.048
J. Matej'ıcek, P. Chr'aska, J. Linke. Thermal spray coatings for fusion applications. Review. J. Thermal Spray Technol. 16, 64 (2007). https://doi.org/10.1007/s11666-006-9007-2
A.V. Golubeva, V.A. Kurnaev, M. Mayer, I. Rot. Capture of deuterium into plasma-sputtered tungsten. Vopr. At. Nauki Tekhn. Ser. Termoyad. Sintez No. 2, 18 (2007) (in Russian).
G. De Temmerman, R. P. Doerner. Deuterium retention and release in tungsten co-deposited layers. J. Nucl. Mater. 389, 479 (2009). https://doi.org/10.1016/j.jnucmat.2009.03.028
Y. Zhang, W. Wang, H. Ren, W. Han, F. Liu, J. Yu, Sh. Peng, K. Zhu. Hydrogen irradiation effect of W thin films prepared by magnetron sputtering deposition. Nucl. Instrum. Meth. B 307, 357 (2013). https://doi.org/10.1016/j.nimb.2013.04.026
K. Katayama, K. Uehara, H. Date, S. Fukada, H. Watanabe. Temperature dependence of deuterium retention in tungsten deposits by deuterium ion irradiation. J. Nucl. Mater. 463, 1033 (2015). https://doi.org/10.1016/j.jnucmat.2014.11.103
V.Kh. Alimov, J. Roth, W. M. Shu, D. A. Komarov, K. Isobe, T. Yamanishi. Deuterium trapping in tungsten deposition layers formed by deuterium plasma sputtering. J. Nucl. Mater. 399, 225 (2010). https://doi.org/10.1016/j.jnucmat.2010.01.024
V.V. Bobkov, A.V. Onishchenko, O.V. Sobol, R.I. Starovoitov, Yu.I. Kovtunenko, Yu.E. Logachev, L.P. Tishchenko. Ion-implanted deuterium accumulation in a deposited tungsten coating. J. Surf. Invest. X-ray 4, 852 (2010). https://doi.org/10.1134/S1027451010050289
V.V.Bobkov, L.P.Tishchenko, A.V.Onishchenko, E.N. Zubarev, R.I. Starovoitov, Yu.I. Kovtunenko, Yu.E. Logachev, L.A. Gamayunova. Implantation of helium and deuterium ions into tungsten-coated composite structures. J. Surf. Invest. X-ray 5, 806 (2011). https://doi.org/10.1134/S1027451011080052
V.V. Bobkov, L.P. Tishchenko, T.I. Peregon, Yu.I. Kovtunenko. Hydrogen isotope retention and lattice damage in the constructive materials irradiated with H+/D+ ions. East Eur. J. Phys. 3, No. 3, 47 (2016).
N.A. Azarenkov, V.V. Bobkov, L.P. Tishchenko, R.I. Starovoitov, Yu.I. Kovtunenko, Yu.E. Logachev, L.A. Gamayunova. Sequential implantations of deuterium and helium ions into tungsten-coated composite structures. Probl. Atom. Sci. Technol. Ser. Plasma Physics 3, No. 6, 73 (2016).
J.P. Biersack, J.F. Ziegler. The stopping and range of ions in solids. In: Ion Implantation Techniques (Springer, 1982), p. 122. https://doi.org/10.1007/978-3-642-68779-2_5
B.M. Smirnov. Atomic Collisions and Elementary Processes in Plasma (Atomizdat, 1968) (in Russian).
L.P. Tishchenko, T.I. Peregon, Yu.I. Kovtunenko, V.V. Bobkov, A.V. Onishchenko, R.I. Starovoitov. Investigation of the capture processes and gas evolution of ion-implanted deuterium from tungsten films. Izv. Ross. Akad. Nauk. Ser. Fiz. 70, 1197 (2006) (in Russian).
T. Hino, Y. Yamauchi, Y. Hirohata. Helium retention of plasma facing materials. J. Nucl. Mater. 266-269, 538 (1999). https://doi.org/10.1016/S0022-3115(98)00587-X
Zh. Fu, N. Yoshida, H. Iwakiri, Z. Xu. Thermal desorption and surface modification of He+ implanted into tungsten. J. Nucl. Mater. 329-333, 692 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.190
S. Nagata, K. Takahiro, S. Horiike, S. Yamaguchi. Retention and release of deuterium implanted in W and Mo. J. Nucl. Mater. 266-269, 1151 (1999). https://doi.org/10.1016/S0022-3115(98)00520-0
A. Manhard, K. Schmid, M. Balden, W. Jacob. Influence of the microstructure on the deuterium retention in tungsten. J. Nucl. Mater. 415, S632 (2011). https://doi.org/10.1016/j.jnucmat.2010.10.045
V.V. Bobkov, R.I. Starovoitov, L.P. Tishchenko, E.N. Zubarev, Yu.I. Kovtunenko, Yu.E. Logachev. The influence of deuterium and helium implanted ions on the structure of condensed tungsten coating. In: Proceedings of the 20th International Conference on Ion-Surface Interactions, Zvenigorod, Russia, August 25-29 (2011), Vol. 2, p. 61.
V.V. Bobkov, R.I. Starovoitov, L.P. Tishchenko, Yu.I. Kovtunenko, L.A. Gamayunova. Deuterium-ion implantation into composite structures with tungsten coatings. J. Surf. Invest. X-ray 8, 853 (2014). https://doi.org/10.1134/S1027451014030264
G. Carter. Thermal resolution of desorption energy spectra. Vacuum 12, 245 (1962). https://doi.org/10.1016/0042-207X(62)90526-2
V.S. Efimov, Yu.M. Gasparyan, A.A. Pisarev. Investigation of a fine structure of deuterium thermal desorption spectra from tungsten. In: Proceedings of the 20th International Conference on Ion-Surface Interactions, Zvenigorod, Russia, August 25-29 (2001), Vol. 1, p. 306.
H. Eleveld, A. van Veen. Void growth and thermal desorption of deuterium from voids in tungsten. J. Nucl. Mater. 212, 1421 (1994). https://doi.org/10.1016/0022-3115(94)91062-6
R. Sakamoto, T. Muroga, N. Yoshida. Microstructural evolution induced by low energy hydrogen ion irradiation in tungsten. J. Nucl. Mater. 220, 819 (1995). https://doi.org/10.1016/0022-3115(94)00622-9
S. O'hira, A. Steiner, H. Nakamura, R. Causey, M. Nishi, S. Willms. Tritium retention study of tungsten using various hydrogen isotope irradiation. J. Nucl. Mater. 258, 990 (1998). https://doi.org/10.1016/S0022-3115(98)00315-8
V.V. Kirsanov. Defects in Crystals and Their Computer Simulation (Nauka, 1980) (in Russian).
A. Debelle, P.-E. Lhuillie, M.-F. Barthe, T. Sauvage, P. Desgardin. Helium desorption in 3He implanted tungsten at low fluence and low energy. Nucl. Instrum. Meth. B 268, 223 (2010). https://doi.org/10.1016/j.nimb.2009.10.176
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.