Electric field and Electric Forces in a Spontaneously Polarized Nonpolar Isotropic Dielectric

  • M. D. Tomchenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: spontaneous polarization, dielectric

Abstract

Based on the microscopic Maxwell equations, we develop a method of description of the electric field in a spontaneously polarized isotropic nonpolar dielectric. We find the solution for the electric field E(r) for several typical examples. Moreover, we generalize Helmholtz’s formula for the electric force acting on a volume element of a dielectric with regard for the contribution of the spontaneous polarization.

References

J.C. Maxwell. A Treatise on Electricity and Magnetism (Clarendon Press, 1892).

W.R. Smithe. Static and Dynamic Electricity (McGraw-Hill, 1950).

J.D. Jackson. Classical Electrodynamics (Wiley, 1962) [ISBN: 0471431311, 978-0471431312].

L.D. Landau, E.M. Lifshitz. Electrodynamics of Continuous Media (Pergamon Press, 1984) [ISBN: 978-0080302751]. https://doi.org/10.1016/B978-0-08-030275-1.50007-2

I.E. Tamm. Fundamentals of the Theory of Electricity (Mir, 1979) (in Russian), Chapt. II [ISBN: 5-9221-0313-X].

M. Born, K. Huang. Dynamical Theory of Crystal Lattices (Clarendon Press, 1988) [ISBN: 0198503695, 9780198503699].

B.A. Strukov, A.P. Levanyuk. Ferroelectric Phenomena in Crystals: Physical Foundations (Springer, 1998) [ISBN: 978-3-642-64340-8]. https://doi.org/10.1007/978-3-642-60293-1

A.S. Rybalko, S.P. Rubets. Observation of mechanoelectric effect in He II. Low Temp. Phys. 31, 623 (2005). https://doi.org/10.1063/1.2001649

A.S. Rybalko. Observation of the electric induction due to a second-sound wave in He II. Low Temp. Phys. 30, 994 (2004). https://doi.org/10.1063/1.1820042

T.S. Chagovets. A study of the electric response of He II at the excitation of second sound waves. Low Temp. Phys. 42, 176 (2016). https://doi.org/10.1063/1.4942758

H. Yayama, Y. Nishimura, H. Uchiyama, H. Kawai, J.-P. van Woensel, A.G. Hafez. Electric response induced by second sound in superfluid helium. Low Temp. Phys. 44, 1090 (2018). https://doi.org/10.1063/1.5055857

T.S. Chagovets. Detection of electric response at excitation of first sound in He II. J. Low Temp. Phys. 187, 383 (2017). https://doi.org/10.1007/s10909-017-1746-6

A.K. Tagantsev. Pyroelectric, piezoelectric, flexoelectric, and thermal polarization effects in ionic crystals. Sov. Phys. Usp. 30, 588 (1987). https://doi.org/10.1070/PU1987v030n07ABEH002926

V.L. Ginzburg. Phase transitions in ferroelectrics: some historical remarks. Physics-Uspekhi 44, 1037 (2001). https://doi.org/10.1070/PU2001v044n10ABEH001021

E.A. Eliseev, A.N. Morozovska. General approach for the description of size effects in ferroelectric nanosystems, J. Mater. Sci. 44, 5149 (2009). https://doi.org/10.1007/s10853-009-3473-0

W. Byers Brown, D.M. Whisnant. Interatomic dispersion dipole. Mol. Phys. 25, 1385 (1973). https://doi.org/10.1080/00268977300101191

D.M. Whisnant, W. Byers Brown. Dispersion dipole between rare-gas atoms. Mol. Phys. 26, 1105 (1973) https://doi.org/10.1080/00268977300102331

V.M. Loktev, M.D. Tomchenko. On the mutual polarization of two He-4 atoms. J. Phys. B: At. Mol. Opt. Phys. 44, 035006 (2011). https://doi.org/10.1088/0953-4075/44/3/035006

M.D. Tomchenko. Some mechanisms of "spontaneous" polarization of superfluid He-4. J. Low Temp. Phys. 158, 854 (2010). https://doi.org/10.1007/s10909-009-0057-y

L.D. Landau, E.M. Lifshitz. The Classical Theory of Fields (Pergamon Press, 1971), Chapt. V [ISBN: 978-0080160191].

M.D. Tomchenko. Theory of the electric activity of He II induced by waves of first and second sound. Phys. Rev. B 83, 094512 (2011). https://doi.org/10.1103/PhysRevB.83.094512

G.A. Korn, T.M. Korn. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (McGraw-Hill, 1968).

R. Kretschmer, K. Binder. Surface effects on phase transitions in ferroelectrics and dipolar magnets. Phys. Rev. B 20, 1065 (1979). https://doi.org/10.1103/PhysRevB.20.1065

A.N. Morozovska, E.A. Eliseev, M.D. Glinchuk. Size effects and depolarization field influence on the phase diagrams of cylindrical ferroelectric nanoparticles. Physica B 387, 358 (2007). https://doi.org/10.1016/j.physb.2006.04.030

E.A. Eliseev, A.V. Semchenko, Y.M. Fomichov, M.D. Glinchuk, V.V. Sidsky, V.V. Kolos, Yu.M. Pleskachevsky, M.V. Silibin, N.V. Morozovsky, A.N. Morozovska. Surface and finite size effects impact on the phase diagrams, polar, and dielectric properties of (Sr,Bi)Ta2O9 ferroelectric nanoparticles. J. Appl. Phys. 119, 204104 (2016). https://doi.org/10.1063/1.4952707

V.L. Ginzburg. Theory of ferroelectric phenomena, Uspekhi Fiz. Nauk 38, 490 (1949) (in Russian). https://doi.org/10.3367/UFNr.0038.194908b.0490

J.W. Gibbs. Elementary Principles in Statistical Mechanics (Scribner's sons, 1902), Chapters I, IV.

N.N. Bogoliubov. Lectures on Quantum Statistics, vol. 1: Quantum Statistics (Gordon and Breach, 1967) [ISBN: 0677200307, 9780677200309].

L.D. Landau, E.M. Lifshitz. Theory of Elasticity (Pergamon Press, 1970) [ISBN: 978-0080064659].

B.N. Esel'son, V.N. Grigor'ev, V.G. Ivantsov, E.Ya. Rudavskii, D.N. Sanikadze, I.A. Serbin. Properties of Liquid and Solid Helium (Izd. Standartov, 1978) (in Russian).

Published
2019-08-02
How to Cite
Tomchenko, M. (2019). Electric field and Electric Forces in a Spontaneously Polarized Nonpolar Isotropic Dielectric. Ukrainian Journal of Physics, 64(6), 509. https://doi.org/10.15407/ujpe64.6.509
Section
Semiconductors and dielectrics