Photoelectric Properties of SiGe Films Covered with Amorphous- and Polycrystalline-Silicon Layers
DOI:
https://doi.org/10.15407/ujpe64.5.415Keywords:
photovoltage, SiGe, a-Si, poly-SiAbstract
The deposition of thin layers of amorphous (a-Si) or polycrystalline (poly-Si) silicon onto the Ge0.25Si0.75 film already covering the surface of a crystalline silicon (c-Si) wafer is found to significantly reduce the magnitude of the negative surface photovoltage (SPV) generated in the Ge0.25Si0.75 film. At the same time, if the light penetration depth is sufficiently large, so that light penetrates into both the deposited layers and the near-surface region in the Si substrate, a positive SPV is observed within time intervals exceeding 10–20 мs after the light pulse terminates. It is also found that the saturation of the a-Si layer in the a-Si/Ge0.25Si0.75/c-Si heterostructure results in a substantial (by a factor of six) growth of the positive component of the SPV signal. This effect can be used while developing efficient solar components on the basis of a-Si/GexSi1−x/c-Si heterostructures.
References
A. Sch?uppen. SiGe-HBTs for mobile communication. Solid-State Electron. 43, 1373 (1999). https://doi.org/10.1016/S0038-1101(99)00076-3
K. Washio. SiGe HBT and BiCMOS technologies for optical transmission and wireless communication systems. IEEE Trans. Electron. Dev. 50, 656 (2003). https://doi.org/10.1109/TED.2003.810484
Y. Iseri, H. Yamada, Y. Goda, T. Arakawa, K. Tada, N. Haneji. Analysis of electrorefractive index change in Ge/SiGe coupled quantum well for low-voltage silicon-based optical modulators. Phys. E 43, 1433 (2011). https://doi.org/10.1016/j.physe.2011.03.021
A. Alguno, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, K. Nakajima, Y. Shiraki. Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure. Appl. Phys. Lett. 83, 1258 (2003). https://doi.org/10.1063/1.1600838
H. Ferhati, F. Djeffal, Role of non-uniform Ge concentration profile in enhancing the efficiency of thin-film SiGe/Si solar cells. Optik 158, 192 (2018). https://doi.org/10.1016/j.ijleo.2017.12.091
X. Zhao, D. Li, T. Zhang, B. Conrad, L. Wang, A. H. Soeriyadi, J. Han, M. Diaz, A. Lochtefeld, A. Gerger, I. Perez-Wurfl, A. Barnett. Short circuit current and efficiency improvement of SiGe solar cell in a GaAsP-SiGe dual junction solar cell on a Si substrate. Sol. Energ. Mater. Sol. Cell. 159, 86 (2017). https://doi.org/10.1016/j.solmat.2016.08.037
A.A. Shklyaev, V. A. Volodin, M. Stoffel, H. Rinnert, M. Vergnat. Raman and photoluminescence spectroscopy of SiGe layer evolution on Si(100) induced by dewetting. J. Appl. Phys. 123, 015304 (2018). https://doi.org/10.1063/1.5009720
A.G. Aberle, S. Glunz, W. Warta. Impact of illumination level and oxide parameters on Shockley-Read-Hall recombination at the Si-SiO2 interface. J. Appl. Phys. 71, 4422 (1992). https://doi.org/10.1063/1.350782
D. Diouf, J.P. Kleider, T. Desrues, P.-J. Ribeyron. Effects of the front surface field in n-type interdigitated back contact silicon heterojunctions solar cells. Energ. Proc. 2, 59 (2010). https://doi.org/10.1016/j.egypro.2010.07.011
R. Pandey, R. Chaujar. Rear contact SiGe solar cell with SiC passivated front surface for >90-percent external quantum efficiency and improved power conversion efficiency. Sol. Energy 135, 242 (2016). https://doi.org/10.1016/j.solener.2016.05.056
Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Edited by W.G.J.H.M. van Sark, L. Korte, F. Roca (Springer, 2012) [ISBN: 978-3-642-22274-0].
Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells, edited by W.R. Fahrner (Chemical Industry Press and Springer, 2013) [ISBN: 978-3-642-37038-0].
S. Dauwe, J. Schmidt, R. Hezel. Very low surface recombination velocities on p- and n-type silicon wafers passivated with hydrogenated amorphous silicon films. In Proceedings of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, Louisiana, May 19-24, 2002 (2002), p. 1246.
T. Krajangsang, S. Inthisang, J. Sritharathikhun, A. Hongsingthong, A. Limmanee, S. Kittisontirak, P. Chinnavornrungsee, R. Phatthanakun, K. Sriprapha. An intrinsic amorphous silicon oxide and amorphous silicon stack passivation layer for crystalline silicon heterojunction solar cells. Thin Solid Films 628, 107 (2017). https://doi.org/10.1016/j.tsf.2017.03.010
R.A. Street. Hydrogenated Amorphous Silicon (Cambridge Univ. Press, 2005) [ISBN: 9780521019347].
Y. Yan, M. Page, T.H. Wang, M.M. Al-Jassim, H.M. Branz, Q. Wang, Atomic structure and electronic properties of c-Si/a-Si:H heterointerfaces. Appl. Phys. Lett. 88, 121925 (2006). https://doi.org/10.1063/1.2189670
M.D?urr, U.H?ofer. Hydrogen diffusion on silicon surfaces. Prog. Surf. Sci. 88, 61 (2013). https://doi.org/10.1016/j.progsurf.2013.01.001
J.P. Seif, D. Menda, A. Descoeudres, L. Barraud, O. ? Ozdemir, C. Ballif, S. De Wolf. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance. J. Appl. Phys. 120, 054501 (2016). https://doi.org/10.1063/1.4959988
U. R?omer, R. Peibst, T. Ohrdes, B. Lim, J. Kr?ugener,
E. Bugiel, T. Wietler, R. Brendel. Recombination behavior and contact resistance of n+ and p+ poly-crystalline Si/mono-crystalline Si junctions, Sol. Energ. Mat. Sol. Cell. 131, 85 (2014). https://doi.org/10.1016/j.solmat.2014.06.003
C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, B. Rech. Polycrystalline silicon thin-film solar cells: Status and perspectives. Sol. Energy Mater. Sol. Cells 119, 112 (2013). https://doi.org/10.1016/j.solmat.2013.05.043
R. Peibst, U. R?omer, Y. Larionova, M. Rien?acker, A. Merkle, N. Folchert, S. Reiter, M. Turcu, B. Min, J. Kr?ugener, D. Tetzlaff, E. Bugiel, T. Wietler, R. Brendel. Working principle of carrier selective poly-Si/c-Si junctions: Is tunnelling the whole story? Sol. Energy Mater. Sol. Cells 158, 60 (2016). https://doi.org/10.1016/j.solmat.2016.05.045
C.H. Seager, D.S. Ginley. Passivation of grain bound-aries in polycrystalline silicon. Appl. Phys. Lett. 34, 337 (1979). https://doi.org/10.1063/1.90779
A. Mimura, N. Konishi, K. Ono, J-I. Ohwada, Y. Hosokawa, Y-A. Ono, T. Suzuki, K. Miyata, H. Kawakami. High performance low-temperature poly-Si n-channel TFTs for LCD. IEEE Trans. Electron Devices 36, 351 (1989). https://doi.org/10.1109/16.19936
N. Sridhar, D.D.L. Chung, W.A. Anderson, J. Coleman. Polysilicon films of high photoresponse, obtained by vacuum annealing of aluminum capped hydrogenated amorphous silicon. J. Appl. Phys. 78, 7304 (1995). https://doi.org/10.1063/1.360769
J.A. Peck, P. Zonooz, D. Curreli, G.A. Panici, B.E. Jurczyk, D.N. Ruzic. High deposition rate nanocrystalline and amorphous silicon thin film production via surface wave plasma source. Surf. Coat. Technol. 325, 370 (2017). https://doi.org/10.1016/j.surfcoat.2017.05.074
S. Honda, T. Mates, B. Rezek, A. Fejfar, J. Ko?cka. Microscopic study of the H2O vapor treatment of the silicon grain boundaries. J. Non-Cryst. Sol. 354, 2310 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.09.107
S.A. Hadi, P. Hashemi, A. Nayfeh, J.L. Hoyt. Thin film a-Si/c-Si1?xGex/c-Si heterojunction solar cells: Design and material quality requirements. ECS Trans. 41, 3 (2011).
E. Kadri, M. Krichen, A.B. Arab. Analytical method for the analysis of thin SiGe/Si solar cells with front surface field. Opt. Quant. Electron. 48, 305 (2016). https://doi.org/10.1007/s11082-016-0574-2
E. Kadri, K. Dhahri, A. Zaafouri, M. Krichen, M. Rasheed, K. Khirouni, R. Barill?e. ac conductivity and dielectric behavior of thin films synthesized by molecular beam epitaxial method. J. Alloy. Compd. 705, 708 (2017). https://doi.org/10.1016/j.jallcom.2017.02.117
A. Podolian, A. Nadtochiy, O. Korotchenkov, B. Romanyuk, V. Melnik, V. Popov. Enhanced photoresponse of Ge/Si nanostructures by combining amorphous silicon deposition and annealing. J. Appl. Phys. 124, 095703 (2018). https://doi.org/10.1063/1.5029948
M.Ya. Valakh, P.M. Lytvyn, A.S. Nikolenko, V.V. Strelchuk, Z.F. Krasilnik, D.N. Lobanov, A.V. Novikov. Gigantic uphill diffusion during self-assembled growth of Ge quantum dots on strained SiGe sublayers. Appl. Phys. Lett. 96, 141909 (2010). https://doi.org/10.1063/1.3383241
A.V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat. Thin-film silicon solar cell technology. Prog. Photovolt. Res. Appl. 12, 113 (2004). https://doi.org/10.1002/pip.533
J. Humlicek, F. Lukes, E. Schmidt. Silicon-germanium alloys (SixGe1?x). In Handbook of Optical Constants of Solids. Edited by E.D. Palik (Academic Press, 1998), Part 2, Subpart 2 [ISBN: 0-12-544422-2]. https://doi.org/10.1016/B978-0-08-055630-7.50039-0
L. Kronik, Y. Shapira. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 37, 1 (1999). https://doi.org/10.1016/S0167-5729(99)00002-3
C.G.V. de Walle, R.M. Martin. Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Phys. Rev. B 34, 5621 (1986). https://doi.org/10.1103/PhysRevB.34.5621
O.V. Vakulenko, S.V. Kondratenko, A.S. Nikolenko, S.L. Golovinskiy, Yu.N. Kozyrev, M.Yu. Rubezhanska, A.I. Vodyanitsky. Photoconductivity spectra of Ge/Si heterostructures with Ge QDs. Nanotechnology 18, 185401 (2007). https://doi.org/10.1088/0957-4484/18/18/185401
S. Tardon, R. Br?uggemann. Characterization of the interface properties in a-Si:H/c-Si heterostructures by photoluminescence. J. Phys. D 43, 115102 (2010). https://doi.org/10.1088/0022-3727/43/11/115102
T.F. Schulze, L. Korte, E. Conrad, M. Schmidt, B. Rech. Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells. J. Appl. Phys. 107, 023711 (2010). https://doi.org/10.1063/1.3267316
A. Nadtochiy, O. Korotchenkov, B. Romanyuk, V. Melnik, V. Popov. Photovoltage improvements in Cz-Si by low-energy implantation of carbon ions. Mater. Res. Express 3, 055017 (2016). https://doi.org/10.1088/2053-1591/3/5/055017
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.