Microscopic Calculation of Josephson Current in Tunnel Junctions with Two-Gap Superconductors

Authors

  • A. M. Shutovskyi Lesya Ukrainka Eastern European National University
  • A. V. Svidzinskyi Lesya Ukrainka Eastern European National University
  • V. E. Sakhnyuk Lesya Ukrainka Eastern European National University
  • O. Yu. Pastukh Lesya Ukrainka Eastern European National University

DOI:

https://doi.org/10.15407/ujpe63.11.1001

Keywords:

quasiclassical equation, energy gap, Green’s function, t-representation, current density, dielectric film, Josephson junction, two-gap superconductor, phase difference

Abstract

Quasiclassical equations of the one-gap superconductivity theory have been applied to superconductors with two energy gaps. Using the equations for Green’s functions obtained in the t-representation, the Josephson current density through tunnel junctions with two-gap superconductors is calculated.

References

A.A. Golubov, M. Yu. Kupriyanov, E. Il'ichev. The current-phase relation in Josephson junctions. Rev. Mod. Phys. 6, 411 (2004). https://doi.org/10.1103/RevModPhys.76.411

K.K. Likharev. Superconducting weak links. Rev. Mod. Phys. 51, 101 (1979). https://doi.org/10.1103/RevModPhys.51.101

A.V. Svidzinskii, V.A. Slyusarev. Contribution to the theory of tunneling in superconductors. JETP 24, 120 (1967).

V.P. Galaiko, A.V. Svidzinskii, V.A. Slyusarev. Concerning the theory of proximity effects in superconductors. JETP 56, 835 (1969).

E.N. Bratus, A.V. Svidzinskii. Josephson current in junctions with nonmagnetic impurities. Teor. Mat. Fiz. 3, 239 (1977) (in Russian).

M.Yu. Kupriyanov. Influence of finite transparency on the properties of tunnel SIS junctions. Pis'ma Zh. Eksp. Teor. Fiz. 56, 414 (1992) (in Russian).

V.E. Sakhnyuk, A.V. Svidzynskyi. Dirty Josephson junctions with incomplete barrier transparency. Ukr. Fiz. Zh. 9, 876 (2006) (in Ukrainian).

V. Sakhnyuk, V. Golovii. Influence of the dielectric layer transparency on the shape of current dependence on the phase difference in contacts of the SIS type. Zh. Fiz. Dosl. 15, 2702 (2011) (in Ukrainian).

O.Yu. Pastukh, A.M. Shutovskii, V.E. Sakhnyuk. Influence of depairing effects on current-phase relation in SIS contacts in present of nonmagnetic impurities of arbitrary concentration. Fiz. Nizk. Temp. 43, 835 (2017) (in Russian).

D.F. Moskalenko. Superconductivity in metals with overlapped energy bands. Fiz. Met. Metalloved. 8, 503 (1959) (in Russian).

H. Suhl, B.T. Matthias, L.R. Walker. Bardeen–Cooper–Schrieffer theory of superconductivity in the case of overlapping bands. Phys. Rev. Lett. 3, 552 (1959). https://doi.org/10.1103/PhysRevLett.3.552

J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu. Superconductivity at 39 K in magnesium diboride. Nature 410, 63 (2001). https://doi.org/10.1038/35065039

A.A. Golubov, J. Kortus, O.V. Dolgov, O. Jepsen, Y. Kong, O.K. Andersen, B.J. Gibson, K. Ahn, R.K. Kremer. Specific heat of MgB2 in one- and two-band model from first principle calculations. J. Phys. Condens. Matter 14, 1353 (2002). https://doi.org/10.1088/0953-8984/14/6/320

A. Brinkman, A.A. Golubov, H. Rogalla, O.V. Dolgov, J. Kortus, Y. Kong, O. Jepsen, O.K. Andersen. Multiband model for tunneling in MgB2 junctions. Phys. Rev. B 65, 180517 (2002). https://doi.org/10.1103/PhysRevB.65.180517

I.I. Mazin, O.K. Andersen, O. Jepsen, O V. Dolgov, J. Kortus, A.A. Golubov, A.B. Kuz'menko, D. van der Marel. Superconductivity in MgB2: Clean or dirty? Phys. Rev. Lett. 89, 107002 (2002). https://doi.org/10.1103/PhysRevLett.89.107002

M.B. Maple, P.-C. Ho, V.S. Zapf et al. Heavy fermion superconductivity in the filled skutterudite compound PrOs4Sb12. J. Phys. Soc. Jpn. 71, 23 (2002). https://doi.org/10.1143/JPSJS.71S.23

P. Miranovi’c, K. Machida, V.G. Kogan. Anisotropy of the upper critical field in superconductors with anisotropic gaps: Anisotropy parameters of MgB2. J. Phys. Soc. Jpn. 72, 221 (2003). https://doi.org/10.1143/JPSJ.72.221

T. Dahm, N. Schopohl. Fermi surface topology and the upper critical field in two-band superconductors: Application to MgB2. Phys. Rev. Lett. 91, 017001 (2003). https://doi.org/10.1103/PhysRevLett.91.017001

T. Dahm, S. Graser, N. Schopohl. Fermi surface topology and vortex state in MgB2. Physica C 408, 336 (2004). https://doi.org/10.1016/j.physc.2004.02.152

A. Gurevich. Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors. Phys. Rev. B 67, 184515 (2003). https://doi.org/10.1103/PhysRevB.67.184515

A.E. Koshelev, A.A. Golubov. Why magnesium diboride is not described by anisotropic Ginzburg–Landau theory. Phys. Rev. Lett. 92, 107008 (2004). https://doi.org/10.1103/PhysRevLett.92.107008

A. Omelyanchouk. Coherent current states in two-band superconductors. In: Superconductivity – Theory and Applications. Edited by A.M. Luiz (InTech, 2011), p. 37. https://doi.org/10.5772/16280

A.V. Svidzinskii, Spatially Inhomogeneous Problems in the Superconductivity Theory (Nauka, 1982) (in Russian).

M.E. Zhitomirsky, V.-H. Dao. Ginzburg–Landau theory of vortices in a multigap superconductor. Phys. Rev. B 69, 054508 (2004). https://doi.org/10.1103/PhysRevB.69.054508

A.V. Svidzynskyi. Microscopic Theory of Superconductivity (Vezha, 2001), Part 1 (in Ukrainian).

Published

2018-12-01

How to Cite

Shutovskyi, A. M., Svidzinskyi, A. V., Sakhnyuk, V. E., & Pastukh, O. Y. (2018). Microscopic Calculation of Josephson Current in Tunnel Junctions with Two-Gap Superconductors. Ukrainian Journal of Physics, 63(11), 1001. https://doi.org/10.15407/ujpe63.11.1001

Issue

Section

Semiconductors and dielectrics