Application of Magneto-Optical Crystals for Mechanical Stress Registration

  • I. V. Linchevskyi National Technical University of Ukraine “Kyiv Polytechnical Institute”
  • T. I. Shevchenko National Technical University of Ukraine “Kyiv Polytechnical Institute”
Keywords: Faraday effect, Villari effect, magneto-optical crystal, deformation

Abstract

The theory of inverse magneto-mechanical effect in cubic crystals has been developed. The proposed model involves changes of the magnetostrictive material magnetization in the external polarizing magnetic field when creating a compression-tension or shear deformation. The magnetic field direction is shown to significantly affect the inverse magneto-mechanical effect. Using the bismuth yttrium ferrite garnet as an example, it is demonstrated that the Villari effect in combination with optical methods used to register magnetization changes enables one to measure minimum stresses at a level of 10^−4 Pa · m for compression-tension deformations and 10^−3 Pa · m for shear ones.

References

F.T. Calkins, A.B. Flatau, and M.J. Dapino, J. Intellig. Mater. Syst. Struct. 18, 1057 (2007).

https://doi.org/10.1177/1045389X06072358

J.X. Zhang and L.Q. Chen, Acta Materialia 53, 2845 (2005).

https://doi.org/10.1016/j.actamat.2005.03.002

M J. Dapino, R.C. Smith, and F.T. Calkins, J. Intellig. Mater. Syst. Struct. 13, 737 (2002).

https://doi.org/10.1177/1045389X02013011005

D.A. Filippov, T.A. Galkina, and G. Srinivasan, Pis'ma Zh. Tekhn. Fiz. 38, 82 (2012).

P.G. Evans and M.J. Dapino, J. Appl. Phys. 107, 063906 (2010).

https://doi.org/10.1063/1.3318494

R.M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1959).

W.D. Armstrong, Mater. Sci. Eng. A 285, 13 (2000).

https://doi.org/10.1016/S0921-5093(00)00711-5

S. Datta, J. Atulasimha, and A.B. Flatau, J. Magn. Magn. Mater. 321, 4017 (2009).

https://doi.org/10.1016/j.jmmm.2009.07.067

J. Scheidler and M. Dapino, Smart Mater. Struct. 22, 085015 (2013).

https://doi.org/10.1088/0964-1726/22/8/085015

R. Szewczyk, A. Bienkowski, and R. Kolano, Cryst. Res. Technol. 38, 320 (2003).

https://doi.org/10.1002/crat.200310038

I.J. Garshelis and C.R. Conto, J. Appl. Phys. 79, 4756 (1996).

https://doi.org/10.1063/1.361662

M.J. Sablik and D.C. Jiles, IEEE Trans. Magn. 35, 498 (1999).

https://doi.org/10.1109/20.737472

D.C. Jiles, J. Phys. D 28, 1537 (1995).

https://doi.org/10.1088/0022-3727/28/8/001

I.V. Linchevskii, Opt. Spektrosk. 113, 1 (2012).

https://doi.org/10.1134/S0030400X1207017X

P. Hanson, K. Witter, and W. Toldorf, Phys. Rev. B 27, 6608 (1983).

https://doi.org/10.1103/PhysRevB.27.6608

B.Yu. Sokolov and M.Z. Sharipov, Fiz. Tverd. Tela 56, 939 (2014).

V.D. Tron'ko, I.A. Deryugin, and Yu.A. Kuznetsov, Opt. Spektrosk. 28, 415 (1970).

L.D. Landau and E.M. Lifshitz, Theory of Elasticity (Pergamon Press, New York, 1959).

Published
2018-10-28
How to Cite
Linchevskyi, I., & Shevchenko, T. (2018). Application of Magneto-Optical Crystals for Mechanical Stress Registration. Ukrainian Journal of Physics, 59(11), 1083. https://doi.org/10.15407/ujpe59.11.1083
Section
Solid matter