Spectrum of Bound States of Nucleus 10B in a Three-Cluster Microscopic Model

Authors

  • A. V. Nesterov Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V. S. Vasilevsky Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • T. P. Kovalenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe59.11.1065

Keywords:

three-cluster model, hyperspherical harmonics, bound states, 10B

Abstract

In the frame of a microscopic model, namely a three-cluster algebraic version of the resonating-group method, the spectrum of bound states of nucleus 10B with T = 0 is considered. As a nucleon-nucleon potential, the semirealistic potential containing the central and spin-orbit components is used. The Coulomb interaction of protons is exactly taken into account. The proper order of levels in the spectrum under study and the reasonable agreement with experimental data on the arrangement of levels relative to the lowest breakup threshold of a nucleus are obtained. The role of the spin-orbit interaction in the formation of the spectrum of bound states of nucleus 10B is studied in detail.

References

E. Caurier, P. Navr’atil, W.E. Ormand, and J.P. Vary, Phys. Rev. C 66, 024314 (2002).

https://doi.org/10.1103/PhysRevC.66.024314

P. Navr’atil and W.E. Ormand, Phys. Rev. Lett. 88, 152502 (2002).

https://doi.org/10.1103/PhysRevLett.88.152502

P. Navr’atil and and W. Ormand, Phys. Rev. 68, 034305 (2003).

https://doi.org/10.1103/PhysRevA.68.034305

P. Navr’atil and E. Caurier, Phys. Rev. C 69, 014311 (2004).

https://doi.org/10.1103/PhysRevC.69.014311

E.C. Simpson, P. Navr’atil, R. Roth, and J.A. Tostevin, Phys. Rev. C 86, 054609 (2012).

https://doi.org/10.1103/PhysRevC.86.054609

P. Navr’atil, V.G. Gueorguiev, J.P. Vary, W.E. Ormand, and A. Nogga, Phys. Rev. Lett. 99, 042501 (2007).

https://doi.org/10.1103/PhysRevLett.99.042501

A.M. Shirokov, J.P. Vary, A.I. Mazur, and T.A. Weber, Phys. Lett. B 644, 33 (2007).

https://doi.org/10.1016/j.physletb.2006.10.066

S. Pieper, C. Varga, and R.B. Wiringa, Phys. Rev. C 66, 044310 (2002).

https://doi.org/10.1103/PhysRevC.66.044310

Y. Fujiwara and Y.C. Tang, Prog. Theor. Phys. 93, 357 (1995).

https://doi.org/10.1143/PTP.93.357

D.R. Thompson, M. LeMere, and Y.C. Tang, Nucl. Phys. A 286, 53 (1977).

https://doi.org/10.1016/0375-9474(77)90007-0

H. Nishioka, J. Phys. G: Nucl. Part. Phys. 10, 1713 (1984).

https://doi.org/10.1088/0305-4616/10/12/010

V.S. Vasilevsky, A.V. Nesterov, F. Arickx, and J. Broeckhove, Phys. Rev. C 61, 034606 (2001).

https://doi.org/10.1103/PhysRevC.63.034606

A.V. Nesterov, F. Arickx, J. Broeckhove, and V.S. Vasilevsky, Phys. Part. Nucl. 41, 716 (2010).

https://doi.org/10.1134/S1063779610050047

F.G. Lepekhin and B.B. Simonov, Yad. Fiz. 68, No. 12, 1 (2005).

I. Reichstein and Y.C. Tang, Nucl. Phys. A 158, 529 (1970).

https://doi.org/10.1016/0375-9474(70)90201-0

K. Wildermuth and Y.C. Tang, A Unified Theory of the Nucleus (Acad. Press, New York, 1977).

https://doi.org/10.1007/978-3-322-85255-7

E.J. Heller and H.A. Yamani, Phys. Rev. A 9, 1201 (1974).

https://doi.org/10.1103/PhysRevA.9.1201

H.A. Yamani and L. Fishman, J. Math. Phys. 16, 410 (1975).

https://doi.org/10.1063/1.522516

V.S. Vasilevsky, A.V. Nesterov, F. Arickx, and P.V. Leuven, Yad. Fiz. 60, 413 (1997).

Yu.A. Simonov, Yad. Fiz. 3, 630 (1966).

A.M. Badalyan and Yu.A. Simonov, Yad. Fiz. 3, 1032 (1966).

A.V. Nesterov, Yad. Fiz. 56, 35 (1993).

G.F. Filippov and I.P. Okhrimenko, Yad. Fiz. 32, 932 (1980).

G.F. Filippov, Yad. Fiz. 33, 928 (1981).

G.F. Filippov, V.S. Vasilevsky, and L.L. Chopovskii, Fiz. Elem. Chast. At. Yadr. 15, 1338 (1984).

T.Ya. Mikhelashvili, Yu.F. Smirnov, and A.M. Shirokov, Yad. Fiz. 48, 969 (1988).

V.S. Vasilevsky and F. Arickx, Phys. Rev. A 55, 265 (1997).

https://doi.org/10.1103/PhysRevA.55.265

D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J.E. Purcell, C.G. Sheu, and H.R. Weller, Nucl. Phys. A 745, 155 (2004).

https://doi.org/10.1016/j.nuclphysa.2004.09.059

A. Ozawa, I. Tanihata, T. Kobayashi, Y. Sugihara, O. Yamakawa, K. Omata, K. Sugimoto, D. Olson, W. Christie, and H. Wieman, Nucl. Rhys. A 608, 63 (1996).

https://doi.org/10.1016/0375-9474(96)00241-2

Downloads

Published

2018-10-28

How to Cite

Nesterov, A. V., Vasilevsky, V. S., & Kovalenko, T. P. (2018). Spectrum of Bound States of Nucleus 10B in a Three-Cluster Microscopic Model. Ukrainian Journal of Physics, 59(11), 1065. https://doi.org/10.15407/ujpe59.11.1065

Issue

Section

Nuclei and nuclear reactions