Relativistic Invariance and Mass Renormalization in Quantum Field Theory

Authors

  • P. A. Frolov Institute of Electrophysics and Radiation Technologies, Nat. Acad. of Sci. of Ukraine
  • A. V. Shebeko Institute for Theoretical Physics, National Research Center “Kharkiv Institute of Physics and Technology”

DOI:

https://doi.org/10.15407/ujpe59.11.1060

Keywords:

mass renormalization, relativistic invariance, quantum field theory

Abstract

Starting from the instant form of relativistic quantum dynamics for a system of interacting fields, where only the Hamiltonian and the boost operators carry interactions among ten generators of the Poincar´e group, we propose a constructive way of ensuring the relativistic invariance (RI) in quantum field theory (QFT) with cutoffs in the momentum space. Our approach is based on an opportunity to separate a part in the primary Hamiltonian interaction, whose density in the Dirac (D) picture is the Lorentz scalar. In this work, we study the compatibility of the RI requirements as a whole, i.e., the fulfilment of the well-known commutations for these generators with the structure of mass counterterms in the total field Hamiltonian.

References

P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

https://doi.org/10.1103/RevModPhys.21.392

B.D. Keister and W.N. Polyzou, Adv. Nucl. Phys. 20, 225 (1991).

B.L.G. Bakker, in: Lectures Notes in Physics, edited by H. Latal and W. Schweiger (Springer, Berlin, 2001), p. 1.

A.V. Shebeko and P.A. Frolov, Few-Body Syst. 52, 125 (2012).

https://doi.org/10.1007/s00601-011-0262-5

R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).

A.V. Shebeko and M.I. Shirokov, Progr. Part. Nucl. Phys. 44, 75 (2000).

https://doi.org/10.1016/S0146-6410(00)00060-0

A.V. Shebeko and M.I. Shirokov, Phys. Part. Nuclei 32, 31 (2001).

V.Yu. Korda, L. Canton, and A.V. Shebeko, Ann. Phys. 322, 736 (2007).

https://doi.org/10.1016/j.aop.2006.07.010

S. Weinberg, The Quantum Theory of Fields (Cambridge Univ. Press, Cambridge, 1995), Vol. 1.

H. Kita, Prog. Theor. Phys. 39, 1333 (1968).

https://doi.org/10.1143/ptp/39.5.1333

C. Chandler, in: Proceed. of the 17-th Intern. IUPAP Conference on Few Body Physics (Durham, USA) and the private communication (2003).

K. Friedrichs, Perturbation of Spectra in Hilbert Space (Amer. Math. Soc., Providence, RI, 1965).

Downloads

Published

2018-10-28

How to Cite

Frolov, P. A., & Shebeko, A. V. (2018). Relativistic Invariance and Mass Renormalization in Quantum Field Theory. Ukrainian Journal of Physics, 59(11), 1060. https://doi.org/10.15407/ujpe59.11.1060

Issue

Section

Nuclei and nuclear reactions