Separate Chemical Freeze-Out of Strange Particles with Conservation Laws

  • D. R. Oliinychenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Scs. of Ukraine, FIAS, Goethe-University, Frankfurt
  • V. V. Sagun Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Scs. of Ukraine
  • A. I. Ivanytskyi Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Scs. of Ukraine
  • K. A. Bugaev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Scs. of Ukraine
Keywords: Hadron Resonance Gas Model with the multicomponent hard-core repulsion, hadron multiplicity ratios, chemical freeze-out, Strangeness Horn, strange hadrons

Abstract

The Hadron Resonance Gas Model with two freeze-outs connected by the conservation laws is considered. We are arguing that the chemical freeze-out of strange hadrons should occur earlier than the chemical freeze-out of non-strange hadrons. The hadron multiplicities measured in the heavy ion collisions for the center-of-mass energy range 2.7–200GeV are described well by such a model. Based on a success of such an approach, a radical way to improve the Hadron Resonance Gas Model performance is suggested. Thus, we suggest to identify the hadronic reactions that freeze-out noticeably earlier or later that most of the others reactions (for different collision energies they may be different) and to consider a separate freeze-out for them.

References

P. Braun-Munzinger, K. Redlich, and J. Stachel, in: Quark Gluon Plasma, edited by R.C. Hwa et al., World Scientific, Singapore, 2003, p. 491.

A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A 772, 167 (2006) and references therein.

https://doi.org/10.1016/j.nuclphysa.2006.03.012

F. Becattini, J. Phys. G 23, 1933 (1997).

https://doi.org/10.1088/0954-3899/23/12/017

F. Becattini, J. Manninen, and M. Gazdzicki, Phys. Rev. C 73, 044905 (2006).

https://doi.org/10.1103/PhysRevC.73.044905

K.A. Bugaev, D.R. Oliinychenko, A.S. Sorin, and G.M. Zinovjev, Eur. Phys. J. A 49, 30–1-8 (2013) and references therein.

B. Friman et al. (Eds.), The CBM physics book, Lect. Notes Phys. 814, Springer, 2010.

J. Rafelski, Phys. Lett. B 62, 333 (1991).

https://doi.org/10.1016/0370-2693(91)91576-H

P. Braun-Munzinger, D. Magestro, K. Redlich, and J. Stachel, Phys. Lett. B 518, 41 (2001).

https://doi.org/10.1016/S0370-2693(01)01069-3

K.A. Bugaev, D.R. Oliinychenko, J. Cleymans, A.I. Ivanytskyi, I.N. Mishustin, E.G. Nikonov, and V.V. Sagun, Europhys. Lett. 104, 22002 (2013).

https://doi.org/10.1209/0295-5075/104/22002

K.A. Bugaev, J. Phys. G 28, 1981 (2002).

https://doi.org/10.1088/0954-3899/28/7/357

M.I. Gorenstein, K.A. Bugaev, and M. Gazdzicki, Phys. Rev. Lett. 88, 132301 (2002).

https://doi.org/10.1103/PhysRevLett.88.132301

K.A. Bugaev, M. Gazdzicki, and M.I. Gorenstein, Phys. Lett. B 544, 127 (2002).

https://doi.org/10.1016/S0370-2693(02)02474-7

E. Fermi, Prog. Theor. Phys. 5, 570 (1950).

https://doi.org/10.1143/ptp/5.4.570

L.D. Landau, Izv. Akad. Nauk. SSSR, Ser. Fiz. 17, 51 (1953).

J. Stachel et al., arXiv: 1311.4662 [nucl-th].

K. Redlich et al., J. Phys. G. 36, 064021 (2009).

https://doi.org/10.1088/0954-3899/36/6/064021

M. Gyulassy and X.N. Wang, Nucl. Phys. B 420, 583 (1994).

https://doi.org/10.1016/0550-3213(94)90079-5

X.N. Wang, M. Gyulassy, and M. Pl¨umer, Phys. Rev. D 51, 3436 (1995).

https://doi.org/10.1103/PhysRevD.51.3436

R. Baier, Yu.L. Dokshitzer, S. Peigne, and D. Schiff, Phys. Lett. B 345, 277 (1995).

https://doi.org/10.1016/0370-2693(94)01617-L

K.A. Bugaev et. al., NICA White Paper, Draft 9.01, Contribution 4.21, published on 6 of June, 2013; http://theor.jinr.ru/twiki/pub/NICA/NICAWhitePaper.

S. Chatterjee, R.M. Godbole, and S. Gupta, Phys. Lett. B 727, 554 (2013).

https://doi.org/10.1016/j.physletb.2013.11.008

D.R. Oliinychenko, K.A. Bugaev, and A.S. Sorin, Ukr. J. Phys. 58, 211 (2013).

https://doi.org/10.15407/ujpe58.03.0211

K.A. Bugaev, M.I. Gorenstein, H. St¨ocker, and W. Greiner, Phys. Lett. B 485, 121 (2000).

https://doi.org/10.1016/S0370-2693(00)00690-0

G. Zeeb, K.A. Bugaev, P.T. Reuter, and H. St¨ocker, Ukr. J. Phys. 53, 279 (2008).

K.A. Bugaev, Nucl. Phys. A 807, 251 (2008); arXiv:nuclth/0611102.

K.A. Bugaev, D.R. Oliinychenko, and A.S. Sorin, Ukr. J. Phys. 58, 939 (2013).

https://doi.org/10.15407/ujpe58.10.0939

K.A. Bugaev, A.I. Ivanytskyi, D.R. Oliinychenko, E.G. Nikonov, V.V. Sagun, and G.M. Zinovjev, arXiv: 1312.4367 [hep-ph].

K.A. Bugaev, D.R. Oliinychenko, V.V. Sagun, A.I. Ivanytskyi, J. Cleymans, E.G. Nikonov, and G.M. Zinovjev, arXiv: 1312.5149 [hep-ph].

S. Wheaton, J. Cleymans, and M. Hauer, Comput. Phys. Commun. 180, 84 (2009).

https://doi.org/10.1016/j.cpc.2008.08.001

J.L. Klay et al., Phys. Rev. C 68, 054905 (2003).

https://doi.org/10.1103/PhysRevC.68.054905

L. Ahle et al., Phys. Lett. B 476, 1 (2000).

https://doi.org/10.1016/S0370-2693(00)00037-X

B.B. Back et al., Phys. Rev. Lett. 86, 1970 (2001).

https://doi.org/10.1103/PhysRevLett.86.1970

J.L. Klay et al., Phys. Rev. Lett. 88, 102301 (2002).

https://doi.org/10.1103/PhysRevLett.88.102301

C. Pinkenburg et al., Nucl. Phys. A 698, 495c (2002).

https://doi.org/10.1016/S0375-9474(01)01412-9

P. Chung et al., Phys. Rev. Lett. 91, 202301 (2003).

https://doi.org/10.1103/PhysRevLett.91.202301

B.B. Back et al., Phys. Rev. C 69, 054901 (2004).

https://doi.org/10.1103/PhysRevC.69.054901

S. Albergo et al., Phys. Rev. Lett. 88, 062301 (2002).

https://doi.org/10.1103/PhysRevLett.88.062301

B.B. Back et al., Phys. Rev. Lett. 87, 242301 (2001).

https://doi.org/10.1103/PhysRevLett.87.242301

S.V. Afanasiev et al., Phys. Rev. C 66, 054902 (2002).

https://doi.org/10.1103/PhysRevC.66.054902

S.V. Afanasiev et al., Phys. Rev. C 69, 024902 (2004).

https://doi.org/10.1103/PhysRevC.69.024902

T. Anticic et al., Phys. Rev. Lett. 93, 022302 (2004).

https://doi.org/10.1103/PhysRevLett.93.022302

S.V. Afanasiev et al., Phys. Lett. B 538, 275 (2002).

https://doi.org/10.1016/S0370-2693(02)01970-6

C. Alt et al., Phys. Rev. Lett. 94, 192301 (2005).

https://doi.org/10.1103/PhysRevLett.94.192301

S.V. Afanasiev et al., Phys. Lett. B 491, 59 (2000).

https://doi.org/10.1016/S0370-2693(00)01023-6

B. Abelev et al., Phys. Rev. C 81, 024911 (2010).

https://doi.org/10.1103/PhysRevC.81.024911

B. Abelev et al., Phys. Rev. C 79, 034909 (2009).

https://doi.org/10.1103/PhysRevC.79.034909

J. Adams et al., Phys. Rev. Lett. 92, 182301 (2004).

https://doi.org/10.1103/PhysRevLett.92.182301

J. Adams et al., Phys. Lett. B 567, 167 (2003).

https://doi.org/10.1016/j.physletb.2003.06.039

C. Adler et al., Phys. Rev. C 65, 041901(R) (2002).

J. Adams et al., Phys. Rev. Lett. 92, 112301 (2004).

https://doi.org/10.1103/PhysRevLett.92.112301

J. Adams et al., Phys. Lett. B 612, (2005) 181.

https://doi.org/10.1016/j.physletb.2004.12.082

A. Billmeier et al., J. Phys. G 30, S363 (2004).

https://doi.org/10.1088/0954-3899/30/1/043

Published
2018-10-28
How to Cite
Oliinychenko, D., Sagun, V., Ivanytskyi, A., & Bugaev, K. (2018). Separate Chemical Freeze-Out of Strange Particles with Conservation Laws. Ukrainian Journal of Physics, 59(11), 1051. https://doi.org/10.15407/ujpe59.11.1051
Section
Fields and elementary particles