Formation and Optical Properties of Silver Nanoparticles in Li2B4O7–Gd2O3–Ag2O Borate Glass


  • V. T. Adamiv Institute of Physical Optics
  • I. M. Bolesta Ivan Franko National University of Lviv
  • Ya. V. Burak Institute of Physical Optics
  • R. V. Gamernyk Ivan Franko National University of Lviv
  • R. M. Dutka Institute of Physical Optics
  • I. D. Karbovnyk Ivan Franko National University of Lviv
  • M. V. Periv Ivan Franko National University of Lviv
  • I. M. Teslyuk Institute of Physical Optics



borate glass, metallic Ag nanoparticles, plasmon resonance, nonlinear refractive index


The formation of metallic (silver) nanoparticles (AgNPs) in the near-surface layer of 97.0Li2B4O7–1.0Gd2O3–2.0Ag2O (Li2B4O7:Gd,Ag)glass at the annealing in vacuum or in air has been reported. The “bottom-up”mechanism of nanoparticle formation is suggested. A conclusion is drawn that the annealing in vacuum does not necessarily require the presence of reducing ions, whereas the formation of nanoparticles at the annealing in air is impossible without reducing agents. Structural defects play a crucial role in the AgNPs nucleation process. The intense plasmon absorption bands peaked at 400.4, 564.2, and 413.7 nm are observed in the absorption spectra of glasses enriched with AgNPs. The average radius of nanoparticles is calculated from the half-width of plasmon bands and falls within the interval of 1.0–1.5 nm. The nonlinear refractive index n2 related to plasmons in AgNPs is calculated from the normalized transmission and absorption spectra, is positive, and increases approximately 2–4 times as compared to that of Li2B4O7:Gd,Ag matrix.


V.M. Shalaev, Phys. Rep. 272, 61 (1996).

V.A. Markel and V.M. Shalaev, Phys. Rev. B 53, 2425 (1996).

V.A. Markel and V.M. Shalaev, Phys. Rev. B 53, 2437 (1996).

L.A. Blanco and F.J. Garcia de Abajo, J. Quant. Spectr. Rad. Transf. 89, 37 (2004).

M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).

M.I. Stockman, V.M. Shalaev, M. Moskovits et al., Phys.Rev. B 46, 2821 (1992).

S.V. Karpov, V.S. Gerasimov, I.L. Isaev et al., Phys. Rev. B72, 2545 (2005).

H. Inouye, K. Tanaka, I. Tanahashi et al., Jpn. J. Appl. Phys. 39, 5132 (2000).

Y.-P. Sun, J.E. Riggs, H.W. Rollins et al., J. Phys. Chem. B 103, 77 (1999).

J. Staromlynska, J. McKay, and P. Wilson, J. Appl. Phys. 88, 1726 (2000).

K. Wundke, S. P¨otting, J. Auxier et al., Appl. Phys. Lett. 76, 10 (2000).

M.A. Garcia, J. Phys. D 44, 283001 (2011).

A.V. Red'kov, Fiz. Tverd. Tela 54, 1758 (2012).

P.A. Obraztsov, A.V. Nashchekin, N.V. Nikonorov et al., Fiz. Tverd. Tela 55, 1180 (2013).

Silver Nanoparticles, edited by D.P. Perez (In-Tech, Vukovar, Croatia, 2010).

I.M. Bolesta, O.O. Kushnir, I.I. Kolych et al., Adv. Sci. Eng. Med. 6, 326 (2014).

W. Soppe, F. Aldenkamp, and H.W. Hartog, J. Non-Cryst. Solids 91, 351 (1987).

Y. Ebata, H. Suzuki, S. Matsumura et al., Jpn. J. Appl. Phys. 22, 160 (1983).

S. Fan, G. Chen, W. Wang et al., J. Cryst. Growth 99, 811 (1997).

B. Padlyak, W. Ryba-Romanowski, R. Lisiecki et al., J. Non-Cryst. Solids 356, 2033 (2010).

B.V. Padlyak, N.A. Sergeev, M. Olczewski et al., Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 55, 25 (2014).

R.E. Youngman and J.W. Zwanziger, J. Non-Cryst. Solids 168, 293 (1994).

R.E. Youngman, S.T. Haubrich, J.W. Zwanziger et al., Science 269, 1416 (1995).

V.T. Adamiv, Ya.V. Burak, I.S. Girnyk et al., Funct. Mater. 20, 52 (2013).

V.T. Adamiv, Ya.V. Burak, I.S. Girnyk et al., Funct. Mater. 4, 415 (1997).

K. Terashima, S.-H. Kim, and T. Yoko, J. Ceram. Soc. 76, 1601 (1995).

Ch. Chen, Y. Wu, and R. Li, Int. Rev. Phys. Chem. 8, 65 (1989).

M. Abdel-Baki, F.A. Abdel-Wahab, and F. El-Diasty, J. Appl. Phys. 111, 073506 (2012).

V.T. Adamiv, I.M. Bolesta, Ya.V. Burak et al., Physica B 449C, 31 (2014).

Q. Jiao, D.Zhou, and X. Xu, Mater. Res. Bull. 51, 315 (2014).

M. Sheik-Bahae, A.A. Said, and E.W. Van Stryland, Opt. Lett. 14, 955 (1989).

M. Sheik-Bahae, A.A. Said, T.H. Wei et al., IEEE J. Quant. Electr. QE-26, 760 (1990).

S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

B.V. Nekrasov, Textbook of General Chemistry (Mir, Moscow, 1969).

G.M. Arnold, J. Appl. Phys. 46, 4466 (1975).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

J.M. Fern’andez Navarro, J. Toudert, Y. Rodr’ıguezLazcano et al., Appl. Phys. B 113, 205 (2013).

I.S. Sinev, M. Petrov, A.K. Samasev et al., Nanoscale Res. Lett. 8, 260 (2013).

J.F. Reintjes, Nonlinear Optical Processes in Liquids and Gases (Academic Press, Orlando, 1984).

Yu. Kaganovski, E. Mogilko, A.A. Lipovskii et al., J. Phys. Conf. Ser. 61, 508 (2007).

C. Mohr, M. Dubiel, and H. Hofmeister, J. Phys. Condens. Matter 13, 525 (2001).

A.V. Red'kov, V.V. Zhurina, and A.A. Lipovskii, J. NonCryst. Solids 376, 152 (2013).



How to Cite

Adamiv, V. T., Bolesta, I. M., Burak, Y. V., Gamernyk, R. V., Dutka, R. M., Karbovnyk, I. D., Periv, M. V., & Teslyuk, I. M. (2018). Formation and Optical Properties of Silver Nanoparticles in Li2B4O7–Gd2O3–Ag2O Borate Glass. Ukrainian Journal of Physics, 59(10), 1026.




Most read articles by the same author(s)