Stability of Magnetic Nanowires Against Spin-Polarized Current

Authors

  • V. P. Kravchuk Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe59.10.1001

Keywords:

magnetic nanowire, spin-current, spintronics, soliton

Abstract

The stability of the ground magnetization state of a thin magnetic nanowire against a longitudinal spin-polarized current is studied theoretically with the dipole-dipole interaction taken into account. The critical current, i.e. the minimum current, at which the instability of the ground state develops, is determined. The dependence of the critical current on the size and the shape of a transversal wire cross-section is clarified. Theoretical predictions are confirmed by numerical micromagnetic simulations.

References

S.S.P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).

https://doi.org/10.1126/science.1145799

M. Kl¨aui, J. of Phys.: Cond. Mat. 20, 313001 (2008).

M. Kl¨aui, P.-O. Jubert, R. Allenspach, A. Bischof, J.A.C. Bland, G. Faini, U. R¨udiger, C.A.F. Vaz, L. Vila, and C. Vouille, Phys. Rev. Lett. 95, 026601 (2005).

https://doi.org/10.1103/PhysRevLett.95.026601

A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Europhys. Lett. 69, 990 (2005).

https://doi.org/10.1209/epl/i2004-10452-6

A.V. Khvalkovskiy, K.A. Zvezdin, Y.V. Gorbunov, V. Cros, J. Grollier, A. Fert, and A.K. Zvezdin, Phys. Rev. Lett. 102, 067206 (2009).

https://doi.org/10.1103/PhysRevLett.102.067206

V.P. Kravchuk, O.M. Volkov, D.D. Sheka, and Y. Gaididei, Phys. Rev. B 87, 224402 (2013).

https://doi.org/10.1103/PhysRevB.87.224402

Y. Tserkovnyak, A. Brataas, and G.E. Bauer, J. of Magn. Magn. Mater. 320, 1282 (2008).

https://doi.org/10.1016/j.jmmm.2007.12.012

Y.B. Bazaliy, B.A. Jones, and S.-C. Zhang, Phys. Rev. B 57, R3213 (1998).

https://doi.org/10.1103/PhysRevB.57.R3213

S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004).

https://doi.org/10.1103/PhysRevLett.93.127204

L. Berger, J. Appl. Phys. 49, 2156 (1978).

https://doi.org/10.1063/1.324716

Z. Li and S. Zhang, Phys. Rev. Lett. 92, 207203 (2004).

https://doi.org/10.1103/PhysRevLett.92.207203

D. Ralph and M. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008).

https://doi.org/10.1016/j.jmmm.2007.12.019

G. Tatara, H. Kohno, and J. Shibata, Phys. Reports 468, 213 (2008).

https://doi.org/10.1016/j.physrep.2008.07.003

A. Brataas, A.D. Kent, and H. Ohno, Nat. Mater. 11, 372 (2012).

https://doi.org/10.1038/nmat3311

Y. Gaididei, O.M. Volkov, V.P. Kravchuk, and D.D. Sheka, Phys. Rev. B 86, 144401 (2012).

https://doi.org/10.1103/PhysRevB.86.144401

T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

https://doi.org/10.1103/PhysRev.58.1098

S.V. Tyablikov, Methods in the Quantum Theory of Magnetism (Plenum Press, New York, 1967)].

https://doi.org/10.1007/978-1-4899-7182-1

A. Volkov and V. Kravchuk, Ukr. J. of Phys. 58, 667 (2013).

R. Skomski, J. Phys. C 15, R841 (2003).

F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark, eds., NIST Handbook of Mathematical Functions (Cambridge Univ. Press, New York, 2010).

J. Fernandez-Rossier, M. Braun, A.S. Nunez, and A.H. MacDonald, Phys. Rev. B 69, 174412 (2004).

https://doi.org/10.1103/PhysRevB.69.174412

The Object Oriented MicroMagnetic Framework, developed by M.J. Donahue and D. Porter mainly, from NIST. We used the 1.2 5 release, URL http://math.nist.gov/oommf/.

Downloads

Published

2018-10-25

How to Cite

Kravchuk, V. P. (2018). Stability of Magnetic Nanowires Against Spin-Polarized Current. Ukrainian Journal of Physics, 59(10), 1001. https://doi.org/10.15407/ujpe59.10.1001

Issue

Section

Solid matter