Electric Field Effect on the Percolative Behavior of Systems based on Polyethylene Glycol and Carbon Nanotubes

Authors

  • E. A. Lysenkov V.O. Sukhomlyns’kyi Mykolayiv National University
  • V. V. Klepko Institute of Macromolecular Chemistry, Nat. Acad. of Sci. of Ukraine
  • V. M. Golovanets V.O. Sukhomlyns’kyi Mykolayiv National University
  • V. L. Demchenko Institute of Macromolecular Chemistry, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe59.09.0906

Keywords:

nanocomposite, percolative behavior, carbon nanotubes, polyethylene glycol, dc electric field

Abstract

Thermophysical properties and the percolative behavior of systems based on polyethylene glycol and carbon nanotubes formed under normal conditions and the action of a dc electric field have been studied, by using the differential scanning calorimetry and impedance spectroscopy methods. It is shown that the electric field substantially affect the behavior of nanotubes dispersed in the polymer matrix. Nanotubes are supposed to execute three basic types of motion (rotation, translation, and migration) under the field action, and the corresponding characteristic times are calculated. It is found that the percolation threshold decreases from 0.42% to 0.1% if nanofilled systems are formed in the electric field, which testifies to a substantial alignment of nanotubes in the polymer matrix.

References

D.Y. Khang, J.L. Xiao, C. Kocabas, S. MacLaren, T. Banks, and H.Q. Jiang, Nano. Lett. 8, 124 (2008).

https://doi.org/10.1021/nl072203s

G.H. Gao, T. Cagin, and W.A. Goddard, Nanotechnology 9, 184 (1998).

https://doi.org/10.1088/0957-4484/9/3/007

X.J. Zhou, J.Y. Park, S.M. Huang, J. Liu, and P.L. Mceuen, Phys. Rev. Lett. 95, 146805 (2005).

https://doi.org/10.1103/PhysRevLett.95.146805

L.A. Bulavin, N.I. Lebovka, Y.A. Kyslyi, S.V. Khrapatyi, A.I. Goncharuk, I.A. Mel'nyk, and V.I. Koval'chuk, Ukr. J. Phys. 56, 217 (2011).

S. Berber, Y.K. Kwon, and D. Tomanek, Phys. Rev. Lett. 84, 4613 (2000).

https://doi.org/10.1103/PhysRevLett.84.4613

Q. Cao and J.A. Rogers, Adv. Mater. 21, 29 (2009).

https://doi.org/10.1002/adma.200801995

C.Y. Lee, R. Sharma, A.D. Radadia, R.I. Masel, and M.S. Strano, Angew. Chem. Int. Edit. 47, 5018 (2008).

https://doi.org/10.1002/anie.200704501

E.A. Lysenkov, N.I. Lebovka, Y.V. Yakovlev, V.V. Klepko, and N.S. Pivovarova, Compos. Sci. Technol. 72, 1191 (2012).

https://doi.org/10.1016/j.compscitech.2012.04.002

E.A. Lysenkov, Y.V. Yakovlev, and V.V. Klepko, Ukr. J. Phys. 58, 378 (2013).

https://doi.org/10.15407/ujpe58.04.0378

N.I. Lebovka, E.A. Lysenkov, A.I. Goncharuk, Yu.P. Gomza, V.V. Klepko, and Yu.P. Boiko, J. Compos. Mater. 45, 2555 (2011).

https://doi.org/10.1177/0021998311401107

L.A. Bulavin, V.S. Savenko, N.I. Lebovka, A.I. Kuklin, D.V. Soloviov, and O.I. Ivankov, Nucl. Phys. At. Energy 14, 372 (2013).

Y. Ma, B. Wang, Y. Wu, Y. Huang, and Y. Chen, Carbon 49, 4098 (2011).

https://doi.org/10.1016/j.carbon.2011.06.068

L.X. Benedict, S.G. Louie, and M.L. Cohen, Phys. Rev. B 52, 8541 (1995).

https://doi.org/10.1103/PhysRevB.52.8541

X.Q. Chen, T. Saito, H. Yamada, and K. Matsushige, Appl. Phys. Lett. 78, 3714 (2001).

https://doi.org/10.1063/1.1377627

P.V. Kamat, K.G. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, and D. Meisel, J. Am. Chem. Soc. 126, 10757 (2004).

https://doi.org/10.1021/ja0479888

Y.F. Zhu, C. Ma, W. Zhang, R.P. Zhang, N. Koratkar, and J. Liang, J. Appl. Phys. 105, 054319 (2009).

https://doi.org/10.1063/1.3080243

P.F. Li and W. Xue, Nanosc. Res. Lett. 5, 1072 (2010).

https://doi.org/10.1007/s11671-010-9604-3

E.A. Lysenkov, Yu.P. Gomza, V.V. Klepko, and Yu.A. Kunytskyi, Fiz. Khim. Tverd. Tila 11, 361 (2010).

A. Kyritsis, P. Pissis, and J. Grammatikakis, J. Polymer Sci. B 33, 1737 (1995).

https://doi.org/10.1002/polb.1995.090331205

V.A. Bershtein and V.M. Egorov, Differential Scanning Calorimetry of Polymers: Physics, Chemistry, Analysis, Technology (Ellis Horwood, New York, 1994).

H.W. Chen and F.C. Chang, Polymer 42, 9763 (2001).

https://doi.org/10.1016/S0032-3861(01)00520-1

E.V. Lebedev, Phase Processes in Heterogeneous Polymer Systems (Naukova Dumka, Kyiv, 2012) (in Russian).

J.M. Seprico, G.E. Wnek, and S. Krause, Macromolecules 24, 6879 (1991).

https://doi.org/10.1021/ma00026a019

L.S. Tonkopieva and V.G. Syromyatnikov, Polimer. Zh. 27, 249 (2005).

C. Park, J. Wilkinson, S. Banda, Z. Ounaies, K.E. Wise1, G. Sauti, P.T. Lillehei, and J.S. Harrison, J. Polymer Sci. B 44, 1751 (2006).

https://doi.org/10.1002/polb.20823

H.A. Pohl, Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge Univ. Press, Cambridge, 1978).

M. Monti, M. Natali, L. Torre, and J.M. Kenny, Carbon 50, 2453 (2012).

https://doi.org/10.1016/j.carbon.2012.01.067

M. Shao-Jie and G. Wan-Lin, Chinese Phys. Lett. 25, 270 (2008).

https://doi.org/10.1088/0256-307X/25/1/073

L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, New York, 1984).

C.A. Martin, J.K.W. Sandler, A.H.Windle, M.-K. Schwarz, W. Bauhofer, and K. Schulte, Polymer 46, 877 (2005).

https://doi.org/10.1016/j.polymer.2004.11.081

E.F. Cruz, Y. Zheng, E. Torres, W. Li, W. Song, and K. Burugapalli, Int. J. Electrochem. Sci. 7, 3577 (2012).

S. Kirkpatrick, Phys. Rev. Lett. 27, 1722 (1971).

https://doi.org/10.1103/PhysRevLett.27.1722

D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994).

Published

2018-10-24

How to Cite

Lysenkov, E. A., Klepko, V. V., Golovanets, V. M., & Demchenko, V. L. (2018). Electric Field Effect on the Percolative Behavior of Systems based on Polyethylene Glycol and Carbon Nanotubes. Ukrainian Journal of Physics, 59(9), 906. https://doi.org/10.15407/ujpe59.09.0906

Issue

Section

Nanosystems

Most read articles by the same author(s)