Covariant Differential Identities and Conservation Laws in Metric-Torsion Theories of Gravitation

Authors

  • R. R. Lompay Faculty of Physics, Uzhgorod National University
  • A. N. Petrov M.V. Lomonosov Moscow State University, Sternberg Astronomical Institute

DOI:

https://doi.org/10.15407/ujpe59.07.0663

Keywords:

diffeomorphic invariance, manifest covariance, differential identities, conservation laws, stress-energy-momentum tensors, spin tensors, metric-torsion theories, gravity, Riemann–Cartan geometry

Abstract

The general manifestly generally covariant formalism for constructing the conservation laws and the conserved quantities in arbitrary metric-torsion theories of gravitation, which recently has been elaborated by the authors, is presented.

References

R.R. Lompay and A.N. Petrov, J. Math. Phys. 54, 062504 (2013), arXiv:1306.6887 [gr-qc].

https://doi.org/10.1063/1.4810017

R.R. Lompay and A.N. Petrov, J. Math. Phys. 54, 102504 (2013), arXiv:1309.5620 [gr-qc].

https://doi.org/10.1063/1.4826478

R.R. Lompay and A.N. Petrov, Covariant differential identities and conservation laws in metric-torsion theories of gravitation. III. Killing vectors, boundary terms, and applications(2013), will be submitted to J. of Math. Phys.

P.G. Bergmann, Phys. Rev. 75, 680 (1949).

https://doi.org/10.1103/PhysRev.75.680

P.G. Bergmann and R. Schiller, Phys. Rev. 89, 4 (1953).

https://doi.org/10.1103/PhysRev.89.4

N. Mizkjewitsch, Ann. Phys. (Leipzig) 456, 319 (1957).

https://doi.org/10.1002/andp.19574560603

N.V. Mitskevich, Physical Fields in General Theory of Relativity (Nauka, Moscow, 1969) (in Russian).

N.V. Mitskevich, A.P. Efremov, and A.I. Nesterov, The Field Dynamics in General Theory of Relativity (Energoatomizdat, Moscow, 1985) (in Russian).

F. Klein, Nachr. K¨onigl. Gesellsch. Wissensch. G¨ottingen. Math.-phys. Klasse 171-–189 (1918).

A. Trautman, Bull. l'Acad. Polon. Sci., S´er. math., astr. et phys. 20, 185 (1972).

A. Trautman, Bull. l'Acad. Polon. Sci., S´er. math., astr. et phys. 20, 503 (1972).

A. Trautman, in The Physicists Conception of Nature, edited by J. Mehra (D. Reidel, Boston, 1973), pp. 179—198.

https://doi.org/10.1007/978-94-010-2602-4_8

A. Trautman, in General Relativity and Gravitation. One Hundred Years after the Birth of Albert Einstein, edited by A. Held (Plenum Press, New York, 1980), vol. 1, pp. 287–308.

F.W. Hehl, Gen. Relativ. Gravit. 4, 333 (1973).

https://doi.org/10.1007/BF00759853

F.W. Hehl, Gen. Relativ. Gravit. 5, 491 (1974).

https://doi.org/10.1007/BF02451393

F.W. Hehl, P. von der Heyde, G.D. Kerlich, and J.M. Nester, Rev. Mod. Phys. 48, 393 (1976).

https://doi.org/10.1103/RevModPhys.48.393

A.N. Petrov, Conservation laws in GR and their applications (2000), reported on the Intern. Workshop on Geometrical Physics, NCTS in Hsinchu, Taiwan, July 24–26, 2000. Online version: http://www.astronet.ru/db/msg/1170672 (in Russian).

Downloads

Published

2018-10-24

How to Cite

Lompay, R. R., & Petrov, A. N. (2018). Covariant Differential Identities and Conservation Laws in Metric-Torsion Theories of Gravitation. Ukrainian Journal of Physics, 59(7), 663. https://doi.org/10.15407/ujpe59.07.0663

Issue

Section

Fields and elementary particles