Variational Method for the Calculation of Critical Distance Between Two Coulomb Centers in Graphene

  • O. O. Sobol Taras Shevchenko National University of Kyiv
Keywords: graphene, supercritical instability, critical distance, Kantorovich variational method

Abstract

The supercritical instability in a system of two identical charged impurities in gapped graphene described in the continuous limit by the two-dimensional Dirac equation has been studied. The case where the charge of each impurity is subcritical, but their sum exceeds the critical value calculated in the version with a single Coulomb center, is considered. Using the developed variational method, the dependence of the critical distance Rcr between the impurities on their total charge is calculated. The Rcr-value is found to grow as the total impurity charge increases and the quasiparticle band gap decreases. The results of calculations are compared with those obtained in earlier researches.

References

P.R. Wallace, Phys. Rev. 71, 622 (1947).

https://doi.org/10.1103/PhysRev.71.622

K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Science 306, 666 (2004).

https://doi.org/10.1126/science.1102896

G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).

https://doi.org/10.1103/PhysRevLett.53.2449

A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).

https://doi.org/10.1103/RevModPhys.81.109

V.P. Gusynin, S.G. Sharapov, and J.P. Carbotte, Int. J. Mod. Phys. B 21, 4661 (2007).

https://doi.org/10.1142/S0217979207038022

D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).

https://doi.org/10.1080/00018732.2010.487978

A.F. Young and P. Kim, Nature Phys. 5, 222 (2009).

Y. Wang et al., Science 340, 734 (2013).

https://doi.org/10.1126/science.1234320

I.Ya. Pomeranchuk and Y.A. Smorodinsky, J. Phys. USSR 9, 97 (1945).

Ya.B. Zeldovich and V.N. Popov, Sov. Phys. Usp. 14, 673 (1972).

https://doi.org/10.1070/PU1972v014n06ABEH004735

W. Greiner, B. M¨uller, and J. Rafelski, Quantum Electrodynamics of Strong Fields, (Springer, Berlin, 1985).

https://doi.org/10.1007/978-3-642-82272-8

S.S. Gershtein and Ya.B. Zeldovich, Sov. Phys. JETP 30, 358 (1970).

J. Rafelski, L.P. Fulcher, and W. Greiner, Phys. Rev. Lett. 27, 958 (1971).

https://doi.org/10.1103/PhysRevLett.27.958

B. M¨uller, H. Peitz, J. Rafelski, and W. Greiner, Phys. Rev. Lett. 28, 1235 (1972).

https://doi.org/10.1103/PhysRevLett.28.1235

M.S. Marinov and V.S. Popov, Sov. Phys. JETP 41, 205 (1975).

A.V. Shytov, M.I. Katsnelson, and L.S. Levitov, Phys. Rev. Lett. 99, 236801 (2007); 99, 246802 (2007).

V.M. Pereira, J. Nilsson, and A.H. Castro Neto, Phys. Rev. Lett. 99, 166802 (2007).

https://doi.org/10.1103/PhysRevLett.99.166802

O.V. Gamayun, E.V. Gorbar, and V.P. Gusynin, Phys. Rev. B 80, 165429 (2009).

https://doi.org/10.1103/PhysRevB.80.165429

O.O. Sobol, E.V. Gorbar, and V.P. Gusynin, Phys. Rev. B 88, 205116 (2013).

https://doi.org/10.1103/PhysRevB.88.205116

Bateman Manuscript Project, Higher Transcendental Functions, edited by A. Erd’elyi (McGraw-Hill, New York, 1953), Vol. 2.

V.S. Popov, Sov. J. Nucl. Phys. 14, 257 (1972).

V.S. Popov, Phys. At. Nucl. 64, 367 (2001).

https://doi.org/10.1134/1.1358463

M.S. Marinov, V.S. Popov, and V.L. Stolin, J. Comp. Phys. 19, 241 (1975).

https://doi.org/10.1016/0021-9991(75)90075-3

M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, New York, 2012).

https://doi.org/10.1017/CBO9781139031080

I.S. Gradshtein and I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, Orlando, 1980).

P.F. Byrd and M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists (Springer, Berlin, 1971).

https://doi.org/10.1007/978-3-642-65138-0

Published
2018-10-23
How to Cite
Sobol, O. (2018). Variational Method for the Calculation of Critical Distance Between Two Coulomb Centers in Graphene. Ukrainian Journal of Physics, 59(5), 531. https://doi.org/10.15407/ujpe59.05.0531
Section
Nanosystems