Energy Spectrum and State Diagrams of One-Dimensional Ionic Conductor

  • R. Ya. Stetsiv Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • I. V. Stasyuk Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • O. Vorobyov Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
Keywords: ionic conductor, spectral density, hard-core boson model, phase diagrams

Abstract

The energy spectrum for a finite one-dimensional ionic conductor with periodic boundary conditions has been calculated using the exact diagonalization technique. The ionic conductor is described in the framework of the lattice model, with particles obeying the “mixed” Pauli statistics. The model involves the ion transfer, interaction between neighbor ions, and modulating field. One-particle spectral densities are calculated, and phase diagrams are plotted for various temperatures, magnitudes of interaction between particles, and modulating field strengths. Conditions for the transition from the charge-density-wave phase to the superfluid one with the Bose–Einstein condensate (it can be an analog of the superionic phase) and to Mott-insulator type phase are investigated.

References

T. Tomoyoze and M. Seino, J. Phys. Soc. Jpn. 67, 1667 (1998).

https://doi.org/10.1143/JPSJ.67.1667

A.V. Belushkin, V.I.F. David, R.M. Ibberson, and L.A. Shuvalov, Acta Crystallogr. B 47, 161 (1991).

https://doi.org/10.1107/S010876819001076X

W. Salejda and N.A. Dzhavadov, Phys. Status Solidi B 158, 119 (1990).

https://doi.org/10.1002/pssb.2221580111

W. Salejda and N.A. Dzhavadov, Phys. Status Solidi B 158, 475 (1990).

https://doi.org/10.1002/pssb.2221580208

I.V. Stasyuk, N. Pavlenko, and B. Hilczer, Phase Transit. 62, 135 (1997).

https://doi.org/10.1080/01411599708220065

N.I. Pavlenko, Phys. Rev. B 61, 4988 (2000).

https://doi.org/10.1103/PhysRevB.61.4988

V.V. Krasnogolovets and P.M. Tomchuk, Phys. Status Solidi B 130, 807 (1985).

https://doi.org/10.1002/pssb.2221300247

I.V. Stasyuk, O. Vorobyov, and B. Hilczer, Solid State Ionics 145, 211 (2001).

https://doi.org/10.1016/S0167-2738(01)00960-2

I.V. Stasyuk and O. Vorobyov, Integr. Ferroelectr. 63, 215 (2004).

https://doi.org/10.1080/10584580490459567

I.V. Stasyuk and O. Vorobyov, Phase Transit. 80, 63 (2007).

https://doi.org/10.1080/01411590701315443

G.D. Mahan, Phys. Rev. B 14, 780 (1976).

https://doi.org/10.1103/PhysRevB.14.780

I.V. Stasyuk and I.R. Dulepa, Condens. Matter Phys. 10, 259 (2007).

https://doi.org/10.5488/CMP.10.2.259

I.V. Stasyuk and I. R. Dulepa, J. Phys. Stud. 13, 2701 (2009).

R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys. 62, 170 (1990).

https://doi.org/10.1103/RevModPhys.62.113

E. Lieb, T. Schults, and D. Mattis, Ann. Phys. 16, 407 (1961).

https://doi.org/10.1016/0003-4916(61)90115-4

O. Derzhko and T. Krokhmalskii, Phys. Status Solidi B 208, 221 (1998).

https://doi.org/10.1002/(SICI)1521-3951(199807)208:1<221::AID-PSSB221>3.0.CO;2-E

O. Derzhko and T. Krokhmalskii, Phys. Status Solidi B 217, 927 (2000).

https://doi.org/10.1002/(SICI)1521-3951(200002)217:2<927::AID-PSSB927>3.0.CO;2-5

O. Derzhko, J. Phys. Stud. 5, 149 (2001).

H. Matsuda, and T. Tsuneto, Progr. Theor. Phys. Suppl. 46, 411 (1970).

https://doi.org/10.1143/PTPS.46.411

K. Lin and M. Fisher, J. Low. Temp. Phys. 79, 251 (1990).

https://doi.org/10.1007/BF00682287

G.A. Czathy, J.D. Reppy, and M.H.W. Chan, Phys. Rev. Lett. 91, 135301 (2003).

https://doi.org/10.1103/PhysRevLett.91.135301

I.V. Stasyuk and T.S. Mysakovych, Condens. Matter Phys. 12, 539 (2009).

https://doi.org/10.5488/CMP.12.4.539

G.G. Batrouni and R.T. Scalettar, Phys. Rev. B 46, 9051 (1992).

https://doi.org/10.1103/PhysRevB.46.9051

R. Micnas and S. Robaszkiewicz, Phys. Rev. B 45, 9900 (1992).

https://doi.org/10.1103/PhysRevB.45.9900

G.G. Batrouni and R.T. Scalettar, Phys. Rev. Lett. 84, 1599 (2000).

https://doi.org/10.1103/PhysRevLett.84.1599

K. Bernardet, G.G. Batrouni, J.-L. Meunier, G. Schmid, M. Troyer, and A. Dorneich, Phys. Rev. B 65, 104519 (2002).

https://doi.org/10.1103/PhysRevB.65.104519

K. Bernardet, G.G. Batrouni, and M. Troyer, Phys. Rev. B 66, 054520 (2002).

https://doi.org/10.1103/PhysRevB.66.054520

G. Schmid, S. Todo, M. Troyer, and A. Dorneich, Phys. Rev. Lett. 88, 167208 (2002).

https://doi.org/10.1103/PhysRevLett.88.167208

I. Bloch, J. Daliberd, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

https://doi.org/10.1103/RevModPhys.80.885

R. Vlaming, G.S. Uhrig, and D. Vollhardt, J. Phys.: Condens. Matter 4, 7773 (1992).

https://doi.org/10.1088/0953-8984/4/38/010

B. Lorenz, Phys. Status Solidi B 101, 297 (1980).

https://doi.org/10.1002/pssb.2221010131

I.V. Stasyuk, O.L. Ivankiv, and N.I. Pavlenko, J. Phys. Stud. 1, 418 (1997).

P. Niyaz, R.T. Scalettar, C.Y. Fong, and G.G. Batrouni, Phys. Rev. B 50, 363 (1994).

https://doi.org/10.1103/PhysRevB.50.362

W. Munch, K.D. Kreuer, U. Traub, and J. Maier, Solid State Ionics 77, 10 (1995).

https://doi.org/10.1016/0167-2738(95)00045-8

R. Hassan and E.S. Campbell, J. Chem. Phys. 97, 4362 (1992).

https://doi.org/10.1063/1.463902

M. Eckert and G. Zundel, J. Phys.Chem. 92, 7016 (1988).

https://doi.org/10.1021/j100335a035

C. Menotti and N. Trivedi, Phys. Rev. B 77, 235120 (2008).

https://doi.org/10.1103/PhysRevB.77.235120

I.V. Stasyuk and O. Vorobyov, Ferroelectrics 376, 64 (2008).

https://doi.org/10.1080/00150190802440765

I.V. Stasyuk, O. Vorobyov, and R.Ya. Stetsiv, Ferroelectrics 426, 6 (2012).

https://doi.org/10.1080/00150193.2012.671087

I. Hen, M. Iskin, and M. Rigol, Phys. Rev. B 81, 064503 (2010).

https://doi.org/10.1103/PhysRevB.81.064503

Published
2018-10-23
How to Cite
Stetsiv, R., Stasyuk, I., & Vorobyov, O. (2018). Energy Spectrum and State Diagrams of One-Dimensional Ionic Conductor. Ukrainian Journal of Physics, 59(5), 515. https://doi.org/10.15407/ujpe59.05.0515
Section
Solid matter