A Model for dx2−y2 Superconductivity in the Strongly Correlated Fermionic System

Authors

  • I. Bariakhtar Institute of Magnetism, Nat. Acad. of Sci. of Ukraine, Boston College, Department of Physics
  • A. Nazarenko Institute of Magnetism, Nat. Acad. of Sci. of Ukraine, Harvard University, IAM-HUIT

DOI:

https://doi.org/10.15407/ujpe59.05.0487

Keywords:

superconductivity, strongly correlated fermionic system, t − J model, mean-field approximation

Abstract

Based on the known phenomenology of high-Tc cuprates and the available numerical calculations of the t − J model, a two-dimensional effective fermionic model with the nearest neighbor attraction is proposed. Numerical calculations suggest that the model has the dx2−y2 superconductivity (SC) in the ground state at a low fermionic density. We argue that this model captures the important physics of the dx2−y2 superconducting correlations found earlier in the t − J model by the exact diagonalization approach. Within a self-consistent RPA diagrammatic study, the density and the coupling strength dependence of the critical temperature is calculated. We also investigate the influence of the impurities on our results and show that the suppression of the superconductivity is insignificant, when the retardation effects are accounted for as opposed to the Hartree–Fock approximation.

References

A.J. Leggett, in Modern Trends in the Theory of Condensed Matter, edited by A. Pekalski and R. Przystawa, (Springer, Berlin, 1980).

R.T. Scalettar et al., Phys. Rev. Lett. 62, 1407 (1989);

https://doi.org/10.1103/PhysRevLett.62.1407

A. Moreo and D. Scalapino, Phys. Rev. Lett. 66, 946 1991); M. Randeria, N. Trivedi, A. Moreo, and R.T. Scalettar, Phys. Rev. Lett. 69, 2001 (1992).

D.J. Scalapino, Phys. Rep. 250, 331 (1995).

https://doi.org/10.1016/0370-1573(94)00086-I

N.M. Plakida, High-Temperature Superconductivity: Experiment and Theory (Springer, Berlin, 1995).

https://doi.org/10.1007/978-3-642-78406-4

C.A.R. S’a de Melo, M. Randeria, and J.R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993).

W. Li et al., arXiv:1203.2581 (2012); A. Kordyuk, Visnyk NAN Ukrainy, No. 9, 46 (2012).

A. Kordyuk, Visnyk NAN Ukrainy, No. 9, 46 (2012).

R. Micnas et al., Rev. Mod. Phys. 62, 113 (1990);

https://doi.org/10.1103/RevModPhys.62.113

E. Dagotto et al., Phys. Rev. B 49, 3548 (1994).

https://doi.org/10.1103/PhysRevB.49.3548

S. Haas et al., Phys. Rev. B 51, 5989 (1995).

https://doi.org/10.1103/PhysRevB.51.5989

A. Sboychakov et al., Phys. Rev. B 77, 224504 (2008).

https://doi.org/10.1103/PhysRevB.77.224504

E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

https://doi.org/10.1103/RevModPhys.66.763

R. Gonczarek, M. Krzyzosiak, and A. Gonczarek, Eur. Phys. J. B 61, 299 (2008).

https://doi.org/10.1140/epjb/e2008-00072-6

E.A. Pashitskii and V.I. Pentegov, Low Temp. Phys. 34, 113, (2008).

https://doi.org/10.1063/1.2834256

M.M. Korshunov et al., JETP 99, 559 (2004).

https://doi.org/10.1134/1.1809685

Strong numerical indications of -wave SC have been found before in the related models, in particular, in the − model (see, e.g., E. Dagotto and J. Riera, Phys. Rev. Lett. 70, 682 (1993);

Y. Ohta et al., Phys. Rev. Lett. 73, 324 (1994);

https://doi.org/10.1103/PhysRevLett.73.324

A. Nazarenko et al., Phys. Rev. B 54, R768 (1996)).

https://doi.org/10.1103/PhysRevB.54.R768

E. Dagotto, A. Nazarenko, and A. Moreo, Phys. Rev. Lett. 74, 728 (1994).

https://doi.org/10.1103/PhysRevLett.73.728

E. Dagotto, A. Nazarenko, and M. Boninsegni, Phys. Rev. Lett. 73, 310 (1995);

https://doi.org/10.1103/PhysRevLett.74.310

A. Nazarenko and E. Dagotto, Phys. Rev. B 54, 13158 (1996).

https://doi.org/10.1103/PhysRevB.54.13158

C. D¨urr et al., Phys. Rev. B 63, 014505 (2001).

https://doi.org/10.1103/PhysRevB.63.014505

D. Duffy et al., Phys. Rev. B 56, 5597 (1997).

https://doi.org/10.1103/PhysRevB.56.5597

P. Monthoux and D. Pines, Phys. Rev. Lett 69, 961 (1992).

https://doi.org/10.1103/PhysRevLett.69.961

D.Z. Liu, K. Levin, and J. Maly, Phys. Rev. B 51, 8680 (1995).

https://doi.org/10.1103/PhysRevB.51.8680

S. Ovchinnikov et al., Phys. Sol. State 53, 242 (2011).

https://doi.org/10.1134/S1063783411020235

P. Monthoux and D. Scalapino, Phys. Rev. Lett. 72, 1874 (1994).

https://doi.org/10.1103/PhysRevLett.72.1874

Our numerical calculations reveal that keeping only the one-loop diagram in the effective potential produces a spurious -wave condensate.

Yu.G. Pogorelov, M.C. Santos, V.M. Loktev, Low Temp. Phys., 37, 633 (2011);

https://doi.org/10.1063/1.3651472

Yu.G. Pogorelov, V.M. Loktev, Phys. Rev. B 69, 214508 (2004).

https://doi.org/10.1103/PhysRevB.69.214508

A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinsky, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975).

For a uniform system, the tadpole diagram including the fermionic Green's function.

Downloads

Published

2018-10-23

How to Cite

Bariakhtar, I., & Nazarenko, A. (2018). A Model for dx2−y2 Superconductivity in the Strongly Correlated Fermionic System. Ukrainian Journal of Physics, 59(5), 487. https://doi.org/10.15407/ujpe59.05.0487

Issue

Section

Solid matter