Dimerization Energetics of DNA Minor Groove Binders

  • V. V. Kostjukov Sevastopol National Technical University
  • Yu. G. Miloserdova Sevastopol National Technical University
  • O. A. Shram Sevastopol National Technical University
  • M. A. Rubinson Sevastopol National Technical University
  • M. P. Evstigneev Sevastopol National Technical University, Belgorod State National Research University
Keywords: lexitropsins, dimer, peptide group, aromatic ring, energy contributions

Abstract

The energy analysis of a dimerization in aqueous solutions of seven biologically active lexitropsins, which are different by structure, was carried out with the use of the molecular simulation method. The main stabilization of dimers was shown to take place owing to hydrophobic and intermolecular van der Waals interactions. The latter are mainly associated with energy-favorable contacts between the aromatic rings of molecules and their peptide groups. Despite the significant dipole moments of the molecules concerned, the electrostatic interactions are relatively weak and destabilize the complexes because of the unfavorable relative arrangement of molecular dipoles. Entropic factors and the dehydration were shown to also hinder the dimerization.

References

S.M. Nelson, Mutat. Res. 623, 24 (2007).

https://doi.org/10.1016/j.mrfmmm.2007.03.012

B.S.P. Reddy, S.M. Sondhi, and J.W. Lown, Pharmacol. Therapeut. 84, 1 (1999).

https://doi.org/10.1016/S0163-7258(99)00021-2

R.M. Wartell, J.E. Larson, and R.D. Wells, J. Biol. Chem. 249, 6719 (1974).

M.L. Kopka, C. Yoon, D. Goodsell, P. Pjura, and R.E. Dickerson, J. Mol. Biol. 183, 553 (1985).

https://doi.org/10.1016/0022-2836(85)90171-8

J.G. Pelton and D.E. Wemmer, Proc. Nat. Acad. Sci. USA 86, 5723 (1989).

https://doi.org/10.1073/pnas.86.15.5723

C.J. Suckling, J. Phys. Org. Chem. 21, 575 (2008).

https://doi.org/10.1002/poc.1323

W. Treesuwan, K. Wittayanarakul, N.G. Anthony et al., Phys. Chem. Chem. Phys. 11, 10682 (2009).

https://doi.org/10.1039/b910574c

N.J. Buurma and I. Haq, J. Mol. Biol. 381, 607 (2008).

https://doi.org/10.1016/j.jmb.2008.05.073

M.-V. Salvia, F. Addison, H.Y. Alniss, N.J. Buurma et al., Biophys. Chem. 179, 1 (2013).

https://doi.org/10.1016/j.bpc.2013.04.001

X.-L. Yang, C. Kaenzig, M. Lee, and A.H.-J. Wang, Eur. J. Biochem. 263, 646 (1999).

https://doi.org/10.1046/j.1432-1327.1999.00515.x

X.-L. Yang, R.B. Hubbard, M. Lee et al., Nucleic Acids Res. 27, 4183 (1999).

https://doi.org/10.1093/nar/27.21.4183

S.N. Mitra, M.C. Wahl, and M. Sundaralingam, Acta Crystallogr. D 55, 602 (1999).

https://doi.org/10.1107/S0907444998012475

N.G. Anthony, B.F. Johnston, A.I. Khalaf et al., J. Am. Chem. Soc. 126, 11338 (2004).

https://doi.org/10.1021/ja030658n

C.L. Kielkopf, R.E. Bremer, S. White et al., J. Mol. Biol. 295, 557 (2000).

https://doi.org/10.1006/jmbi.1999.3364

C.L. Kielkopf, E.E. Baird, P.B. Dervan, and D.C. Rees, Nat. Struct. Biol. 5, 104 (1998).

https://doi.org/10.1038/nsb0298-104

C.L. Kielkopf, S. White, J.W. Szewczyk et al., Science 282, 111 (1998).

https://doi.org/10.1126/science.282.5386.111

V.V. Kostjukov, Kh.M. Tverdokhlib, and M.P. Evstigneev, Ukr. Fiz. Zh. 56, 38 (2011).

V.V. Kostjukov, N.M. Khomutova, A.A. Hernandez Santiago et al., J. Chem. Thermodyn. 43, 1424 (2011).

https://doi.org/10.1016/j.jct.2011.04.014

Gaussian 03 (Gaussian Inc., Wallingford, CT, 2004).

W.D. Cornell, P. Cieplak, C.I. Bayly et al., J. Am. Chem. Soc. 117, 5179 (1995).

https://doi.org/10.1021/ja00124a002

T. Brunger, X-PLOR: A System for X-ray Crystallography and NMR (Yale University Press, New Haven, 1992).

K.A. Sharp and B. Honig, J. Chem. Phys. 94, 7684 (1990).

https://doi.org/10.1021/j100382a068

K.A. Sharp, A. Nicholls, R.F. Fine et al., Science 252, 106 (1991).

https://doi.org/10.1126/science.2011744

V.V. Kostjukov, N.M. Khomutova, and M.P. Evstigneev, Ukr. Khim. Zh. 76, 96 (2010).

R. Fraczkiewicz and W. Braun, J. Comput. Chem. 19, 319 (1998).

https://doi.org/10.1002/(SICI)1096-987X(199802)19:3<319::AID-JCC6>3.0.CO;2-W

A.V. Teplukhin, V.I. Poltev, and V.P. Chuprina, Biopolymers 31, 1445 (1991).

https://doi.org/10.1002/bip.360311211

V.V. Kostjukov, N.M. Khomutova, and M.P. Evstigneev, Khim. Fiz. 28, 26 (2009).

S.L. Mayo, B.D. Olafson, and W.A. Goddard, J. Phys. Chem. 94, 8897 (1990).

https://doi.org/10.1021/j100389a010

V.V. Kostjukov and M.P. Evstigneev, Complexation Energetics of Biologically Active Compounds and Nucleic Acids in an Aqueous Solution (Sevastopol Nat. Techn. Univ, Sevastopol, 2012) (in Russian).

M.L. Kopka, C. Yoon, D. Goodsell et al., Proc. Nat. Acad. Sci. USA 82, 1376 (1985).

https://doi.org/10.1073/pnas.82.5.1376

M.L. Kopka, D.S. Goodsell, G.W. Han et al., Structure 5, 1033 (1997).

https://doi.org/10.1016/S0969-2126(97)00255-4

J.P. Gallivan and D.A. Dougherty, Proc. Nat. Acad. Sci. USA 96, 9459 (1999).

https://doi.org/10.1073/pnas.96.17.9459

A.E. Mark and W.F. van Gunsteren, J. Mol. Biol. 240, 167 (1994).

https://doi.org/10.1006/jmbi.1994.1430

V.V. Kostjukov, A.A. Hernandez Santiago, M.P. Evstigneev et al., Phys. Chem. Chem. Phys. 14, 5588 (2012).

https://doi.org/10.1039/c2cp40182g

V.V. Kostjukov, N.M. Khomutova, D.B. Davies et al., Biopolymers 89, 680 (2008).

https://doi.org/10.1002/bip.20985

P. Hobza, Phys. Chem. Chem. Phys. 10, 2581 (2008).

https://doi.org/10.1039/b805489b

Published
2018-10-23
How to Cite
Kostjukov, V., Miloserdova, Y., Shram, O., Rubinson, M., & Evstigneev, M. (2018). Dimerization Energetics of DNA Minor Groove Binders. Ukrainian Journal of Physics, 59(5), 461. https://doi.org/10.15407/ujpe59.05.0461
Section
Archive