Structure and Electrochemical Properties of Aqueous Suspensions of Functionalized Single- and Multiwalled Carbon Nanotubes

Authors

  • U. Ritter Ilmenau University of Technology, Institute of Chemistry and Biotechnology
  • N. G. Tsierkezos Ilmenau University of Technology, Institute of Chemistry and Biotechnology
  • Yu. I. Prylutskyy Taras Shevchenko National University of Kyiv, Department of Biophysics
  • V. V. Cherepanov Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. I. Senenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. A. Marchenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. G. Naumovets Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe59.04.0433

Keywords:

carbon nanotubes, aqueous suspensions, atomic force microscopy, voltammetry, electrochemical impedance spectroscopy

Abstract

The structure of single- and multiwalled carbon nanotubes (CNTs) functionalized with carboxyl groups in water is investigated by means of atomic force microscopy. The electrochemical prop-erties of the water systems containing both types of CNTs are investigated, by using the cyclic voltammetry and electrochemical impedance spectroscopy techniques. The results may be use-ful for the clarification of the mechanisms of specific biological activities of CNTs and their applications in various fields of nanobiotechnology.

References

S. Iijima, Nature 354, 56 (1991).

https://doi.org/10.1038/354056a0

M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996).

P.J.F. Harris, Carbon Nanotubes and Related Structures (Cambridge Univ. Press, Cambridge, 1999).

https://doi.org/10.1017/CBO9780511605819

A. Bianco, K. Kostarelos, C.D. Partidos, and M. Prato, Chem. Commun. 5, 571 (2005).

https://doi.org/10.1039/b410943k

Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes (Carbon Materials: Chemistry and Physics), edited by F. Cataldo and T.Da Ros (Springer, Berlin, 2008).

Z. Liu, S. Tabakman, K. Welsher, and H. Dai, Nano Res. 2, 85 (2009).

https://doi.org/10.1007/s12274-009-9009-8

W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, and F. Braet, Angew. Chem. Int. Ed. 49, 2114 (2010).

https://doi.org/10.1002/anie.200903463

Z. Liu, K. Yang, and S.T. Lee, J. Mater. Chem. 21, 586 (2011).

https://doi.org/10.1039/C0JM02020F

M. Prato, K. Kostarelos, and A. Bianco, Accounts Chem. Res. 41, 60 (2008).

https://doi.org/10.1021/ar700089b

X. Chen, A. Kis, A. Zettl, and C.R. Bertozzi, PNAS 104, 8218 (2007).

https://doi.org/10.1073/pnas.0700567104

Q. Lu, J.M. Moore, G. Huang, A.S. Mount, A.M. Rao, L.L. Larcom, and P.C. Ke, Nano Lett. 4, 2473 (2004).

https://doi.org/10.1021/nl048326j

M.N.V.R. Kumar, G. Hellermann, R.F. Lockey, and S.S. Mohapatra, Expert Opin. Biol. Ther. 4, 1213 (2004).

https://doi.org/10.1517/14712598.4.8.1213

D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J.P. Briand, M. Prato, K. Kostarelos, and A. Bianco, Chem. Commun. 116, 5354 (2004).

N.W.S. Kam, Z. Liu, and H. Dai, J. Am. Chem. Soc. 127, 12492 (2005).

https://doi.org/10.1021/ja053962k

L. Lacerda, A. Bianco, M. Prato, and K. Kostarelos, J. Mater. Chem. 18, 17 (2007).

https://doi.org/10.1039/B711554G

N.W.S. Kam, M. O'Connell, J.A. Wisdom, and H. Dai, PNAS 102, 11600 (2005).

https://doi.org/10.1073/pnas.0502680102

J.E. Podesta, K.T. Al–Jamal, M.A. Herrero, B. Tian, H. Ali–Boucetta, V. Hegde, A. Bianco, M. Prato, and K. Kostarelos, Small 5, 1176 (2009).

https://doi.org/10.1002/smll.200990047

A. Burlaka, S. Lukin, S. Prylutska, O. Remeniak, Yu. Prylutskyy, M. Shuba, S. Maksimenko, U. Ritter, and P. Scharff, Exp. Oncol. 32, 48 (2010).

C. Samori, H. Ali–Boucetta, R. Sainz, Ch. Guo, F.M. Toma, Ch. Fabbro, T.Da Ros, M. Prato, K. Kostarelos, and A. Bianco, Chem. Commun. 46, 1494 (2010).

https://doi.org/10.1039/B923560D

K. Andreichenko, S. Prylutska, K. Medynska, K. Bogutska, N. Nuryshchenko, Yu. Prylutskyy, U. Ritter, and P. Scharff, Int. J. Physiol. Pathophysiol. 3, 341 (2012).

https://doi.org/10.1615/IntJPhysPathophys.v3.i4.50

S.V. Prylutska, I.I. Grynyuk, O.P. Matyshevska, V.M. Yashchuk, Yu.I. Prylutskyy, U. Ritter, and P. Scharff, Physica E 40, 2565 (2008).

https://doi.org/10.1016/j.physe.2007.07.017

C.W. Lam, J.T. James, R. McCluskey, S. Arepalli, and R.L. Hunter, Crit. Rev. Toxicol. 36, 189 (2006).

https://doi.org/10.1080/10408440600570233

A.P. Burlaka, S.M. Lukin, S.V. Prylutska, O.V. Remeniak, Yu.I. Prylutskyy, U. Ritter, and P. Scharff, Biotechnologia Acta 3, 62 (2010).

J.N. Barisci, G.G. Wallace, and R.H. Baughman, J. Electrochem. Soc. 147, 4580 (2000).

https://doi.org/10.1149/1.1394104

S. Prylutska, R. Bilyy, T. Schkandina, A. Bychko, V. Cherepanov, K. Andreichenko, R. Stoika, V. Rybalchenko, Yu. Prylutskyy, P. Scharff, and U. Ritter, Mater. Sci. Engineer. C 32, 1486 (2012).

https://doi.org/10.1016/j.msec.2012.04.029

N.V. Radchenko, Yu.I. Prylutskyy, L.M. Shapoval, V.F. Sagach, T.L. Davydovska, O.V. Dmitrenko, L.G. Stepanenko, L.S. Pobigailo, Ch. Schutze, and U. Ritter, Mat.-wiss. u. Werkstofftech. 44, 171 (2013).

https://doi.org/10.1002/mawe.201300112

Downloads

Published

2018-10-22

How to Cite

Ritter, U., Tsierkezos, N. G., Prylutskyy, Y. I., Cherepanov, V. V., Senenko, A. I., Marchenko, A. A., & Naumovets, A. G. (2018). Structure and Electrochemical Properties of Aqueous Suspensions of Functionalized Single- and Multiwalled Carbon Nanotubes. Ukrainian Journal of Physics, 59(4), 433. https://doi.org/10.15407/ujpe59.04.0433

Issue

Section

Nanosystems

Most read articles by the same author(s)