Carrier Type Reversal of Graphene Multilayered Thin Films

  • H. A. Elmeleegi Physical Research Division, National Research Center (NRC)
  • Z. S. Elmandouh Physical Research Division, National Research Center (NRC)
  • F. Taher Faculty of Science, AlAzhar University (Girls)
Keywords: structure, carrier type reversal, thermoelectric power, electrical conductivity

Abstract

Graphene has unique two-dimensional structure, high surface area, and remarkable chemical stability. Graphene oxide (GO) produced by the Hummers method was reduced to graphene by pulsed laser deposition (PLD). The graphene specimen in the form of a powder and a multilayered structure is studied. X-ray diffraction of graphene is interpreted to elucidate its short-range order and to calculate the number of layers of graphene. Electron diffraction and transmission electron microscope studies elucidate the short-range order nature of deposited graphene. The temperature dependence of the Seebeck coefficient (S) indicates the carrier type reversal (CTR) from the n- to p-type, by starting from 60∘C. CTR is affected by the applied voltage, frequency, and temperature. Distinct oscillations in the Seebeck coefficient thickness dependence are observed and attributed to the size quantization effect in graphene layers. The velocity, mobility, and electrical conductivity are measured and calculated to complete the trans-port properties of graphene.

References

A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

https://doi.org/10.1038/nmat1849

N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, and B.J.V. Wees, Nature 1448, 571 (2007).

https://doi.org/10.1038/nature06037

J.M. Carlsson, Nat. Mater. 6, 801 (2007).

https://doi.org/10.1038/nmat2051

T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Pinar, D.H. Adamson, H.C. Schnipp, X. Chen, R.S. Ruoff, and S.T. Nguyen, Nat. Nanotechnol. 3, 327 (2008).

https://doi.org/10.1038/nnano.2008.96

M. Liang and L. Zhi, J. Mater. Chem. 19, 5871 (2009).

https://doi.org/10.1039/b901551e

S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, and C.N.R. Rao, J. Chem. Sci. 120, 9 (2008).

https://doi.org/10.1007/s12039-008-0002-7

J. Zhu, Nat. Nanotechnol. 3, 528 (2008).

https://doi.org/10.1038/nnano.2008.249

S. Patchkovskii, J.S. Tse, S.N. Yurchenko, L. Zhechkov, T. Heine, and G. Seifert, PNAS 102, 10439 (2005).

https://doi.org/10.1073/pnas.0501030102

N.A. Kotov, Nature 442, 254 (2006).

https://doi.org/10.1038/442254a

G. Eda and M. Chhowalla, Nano Lett. 9, 814 (2009).

https://doi.org/10.1021/nl8035367

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, and I.V. Grigorieva, Nature 438, 197 (2005).

https://doi.org/10.1038/nature04233

Nature 438, 197 (2005).

https://doi.org/10.1038/nature04233

Y.B. Zhang, Y. Tan, H.L. Stormer, and P. Kim, Nature 438, 201 (2005).

https://doi.org/10.1038/nature04235

Nature 438, 201 (2005).

https://doi.org/10.1038/nature04235

J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, and T.J. Booth, S. Roth. Nature 446, 9, 60(2007).

M.I. Katsnelson and K.S. Novoselov, Solid State Commun. 143, 3 (2007).

https://doi.org/10.1016/j.ssc.2007.02.043

F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, and M.I. Katsnelson, Nat. Mater. 6, 652 (2007).

https://doi.org/10.1038/nmat1967

A.N. Obraztsov, Nat. Nanotechnol. 4, 212 (2009).

https://doi.org/10.1038/nnano.2009.67

J.C. Meyer, C.O. Girit, M.F. Crommie, and A. Zettl, Nature 454, 319 (2008).

https://doi.org/10.1038/nature07094

C.T. Vincent, J.A. Matthew, Y. Yang, and B.K. Richard, Nat. Nanotechnol. 4, 25 (2009).

https://doi.org/10.1038/nnano.2008.329

S. Park and R. Ruoff, Nat. Nanotechnol. 4,217(2009).

https://doi.org/10.1038/nnano.2009.58

M.J. McAllister, J. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, and D.L. Milius, Chem. Mater. 19,4396(2007).

https://doi.org/10.1021/cm0630800

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

https://doi.org/10.1126/science.1102896

K.I. Bolotin, K.J. Sikes, Z. Jiang, G. Funderberg, J. Hones, P. Kim, and H.L. Stormer, Solid State Commun. 146, 351 (2008).

https://doi.org/10.1016/j.ssc.2008.02.024

R. Sanjin’es, M.D. Abad, Cr. V^aju, R. Smajda, M. Mioni’c, and A. Magrez, Surf. & Coat. Techn. 206, 727 (2011).

https://doi.org/10.1016/j.surfcoat.2011.01.025

P.S. Kireev, Semiconductor Physics (Mir Publishers, Moscow, 1975).

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.J. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Science 306, 666 (2004);

https://doi.org/10.1126/science.1102896

Y. Zhang, J.P. Small, M.E.S. Amory, and P. Kim, Phys. Rev. Lett. 94,176803 (2005);

https://doi.org/10.1103/PhysRevLett.94.176803

K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fal'ko, M.J. Katsnelson, U. Zeitler, D. Jiang, F. Shedin, and A.K. Geim, Nat. Phys. 2, 177 (2006).

M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 (2002).

https://doi.org/10.1080/00018730110113644

N. Ando, J. Phys. Soc. Jpn. 74, 777 (2005).

https://doi.org/10.1143/JPSJ.74.777

E. McCann and V.I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006).

https://doi.org/10.1103/PhysRevLett.96.086805

P.R. Wallas, Phys. Rev. 71, 622 (1974).

https://doi.org/10.1103/PhysRev.71.622

J.C. Slonczewski and P.R. Weiss, Phys. Rev. 99, 636(A) (1955).

J.W. MacClure, Phys. Rev. 104, 666 (1956).

https://doi.org/10.1103/PhysRev.104.666

E. Fradkin, Phys. Rev. B 33, 3263 (1986).

https://doi.org/10.1103/PhysRevB.33.3263

S.H. Hun, in: Physics and Applications of Graphene – Experiments, edited by S. Mikhailov (InTech, 2011), p.74.

W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

https://doi.org/10.1021/ja01539a017

H.A. Becerril, J. Mao, Z.F. Liu, R.M. Stoltenberg, Z.N. Bao, and Y.S. Chen, ACS Nano 2, 463(2008).

https://doi.org/10.1021/nn700375n

L. Huang; Y. Liu, L. Ji, Y.Qun Xie, T. Wang, and W.Z. Shi, Carbon 49, 2431 (2011).

https://doi.org/10.1016/j.carbon.2011.01.067

R.J. Seresht, M. Jahanshahi, A. Rashidi, and A.A. Ghoreyshi, Appl. Surf. Sci. 276, 672 (2013).

https://doi.org/10.1016/j.apsusc.2013.03.152

R.W. James, X-Ray Crystallography (Wiley, New York, 1961).

B.D. Cullity, Elements of X-Ray Diffraction (AddlsonWesley, Reading, MA, 1956).

H.M. Ju, S.H. Choi, and S.H. Huh, J. of Korean Phys. Society 57, 1649 (2010).

https://doi.org/10.3938/jkps.57.1649

D.A. C.Brawnson, D.K. Kampouris, and C.E. Banks, J. Power Sources 196, 4873 (2011).

https://doi.org/10.1016/j.jpowsour.2011.02.022

P. Pichanuskorn, and P. Bandaru, Mater. Sci. and Engin. 67, 19 (2010).

https://doi.org/10.1016/j.mser.2009.10.001

G.J. Snyder, and E.S. Toberer. Nature Mater. 7, 105 (2008).

https://doi.org/10.1038/nmat2090

K. Seeger, Semiconductor Physics, an Introduction (Springer, Berlin, 1997).

D.B. Strukov, G.S. Snider, D.R. Stewart, and S.R. Williams, Nature 453 (7191), 80 (2008).

https://doi.org/10.1038/nature06932

B.A. Tavger and V.Ya. Demikhovskii, Usp. Fiz. Nauk 96, 61 (1968).

https://doi.org/10.3367/UFNr.0096.196809d.0061

V.A. Bruk, V.V. Garshenin, and A.I. Kurnosov, Semiconductor Technology (Mir Publishers, Moscow, 1971).

Published
2018-10-22
How to Cite
Elmeleegi, H., Elmandouh, Z., & Taher, F. (2018). Carrier Type Reversal of Graphene Multilayered Thin Films. Ukrainian Journal of Physics, 59(4), 426. https://doi.org/10.15407/ujpe59.04.0426
Section
Solid matter